COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

~r
e

R1B2 GUI Detailed Design

Contract DBM-9713-NMS
TSR # 9901961

Document #M362-DS-007R0

July 19, 2000
By

Computer Sciences Corporation and PB Farradyne Inc

.

Revision

Description

Pages Affected

Date

0

Initial Release

All

July 19, 2000

R1B2 GUI Detailed Design Rev. 0

11/20/00

Table of Contents

e e e 1-1]
T 1-1]
TP 1-1]
(.3 SOOIttt 1-1]
(1.4 DESIQN PIOCESSceveieieisiessciisessssssss s st es st ess s st sss s es et snses s snseseneassseaes 1-1]
S e T Lo 1-2|
TR e e 1-2|
P KEY DESIGN CONCEDPES ..eeeeeeeeeeeeeeeeeeeeeeeeas 2-1|
p.1 Voice recording, conversion and playbackc.cccoocovviiiiiiiiiiiiiiii 2-1|
S R I T 2-1]
R.3 User and SYstem ProfilesS..........cccccoviieuieviiiieiiiiicieeieieeeeeeeteeeee st seenaee s 2-2|
R.4 Factory choice when creating New 0DJECtS.......coccocuiviiisiisiecscee e 2-2|
D5 BT TON PTOCESSING.....covoveeveeeeeeeeeeeeeeseeeeeeesesereesneenseseeensneeeseeeseesneessneessnenessnenesneneseeneneas 2-3|
R.6 INSEAIADIE MOTUIES ...ttt s e nses s eeses e seeenseseas 2-4]
R.7 Startup and SNULHOWNc.cuovevieiieieviieieeeeeeeeeeeeee e eevseeeeeeneteensteensneresnereanas 2-4|
R.8 PACKAGING ..o 2-5]
B PacKage DEeSIONS ..occeiieeieeeiiiiiiiiieieeieeteesteeete e et eeteaeeeeeeeeeaeeaneeanes 3-1
Bl CORBAULINEES ..ooooeiieieisiiisiiisi it 3-1
S LYoo =) I 3-3|
B.3 DATATTANSTEN ..ottt eeeeete e e et eeeseeeneeneeeeneenseeeneesessneeeseesens 3-12|
B.4 1Y ST] PP PPTPPT 3-13
BB GUT oo oooseoeessoseeeeseeeeeeeeeeeeeeeeeeseeeeeeseeeeeeeeseeeereeeeeeeeesreseeeeeeree 3-18)
B GUIDMSMOTUIE oo 3-39]
B.7 GUIDICHONAIYMOUUIEc.ooeeeeoeeeeeeeeeeeeeeeeeeeseeeeeeeeeesreenseeneensneeeseenseane 3-80|
B.8 GUIHARMOUAUIE ...ttt e e et e st e e s e assesseessesnsesreeseeseesseennea 3-90|
B.9 GUIMessageLibraryModulec.ccoooouoveeoueieeeeeieeieeeeeieeeeeeteeveeeesensessenseneas 3-139|
B.10 GUIPIANMOUAUIE ..ottt steenatesteeaesnsnnenas 3-158|

R1B2 GUI Detailed Design Rev. 0 i 11/20/00

B.11 GUIRESOUICESMOTUIE..........ccoovieiieereiiiiicieicteeeeee ettt etens e 3-173]
B.12 GUITIaffICEVENTMOTUIEcooeeoeeeeeeeeseeeeeeeeeeeeeeeeeseeeseeenensnenennceesens 3-182|
B.13 GUIUSErManagemMentMOAUIC.............o.ooveeeeeeeeeeeeeeeeeeeveeeesereeeseenseeenseseeesneeeseees 3-239|
T TV TV T —— 3-255]
BI5 HARUTITY oo 3-274]
SR N T —— 3-281|
B.17 NAVIGATOTc.eviiieietiieietecteeieeetee ettt ettt e et e et ese et et esaetesrenseressenseseasessensesenes 3-285|
B.18 SNAZAM ULIIITY ..o 3-292|
B.19 SYSIEM INEEITACES..........ceveeeeeeeteeeeeeeet s et s s ees s enses st sesensesesensesensesessesesansesesses 3-293|
B20 UTIIY oo ooooeosoeesoseeeeeeeeeeoseeeeeseeeeeseeeeeeeeereneeeeeeee 3-347
Acronyms

References

Appendix A — Glossary

R1B2 GUI Detailed Design Rev. 0 iii 11/20/00

Table of Figures

[Figure 1. CORBACIasses (Class DIagram)ceeueveurereeverieeerererrereeneeereeraneresessssnsesssennns 3-1]
Figure 2. DataModelClasses (Class DIiagram)ccvceoveuevirereirerenirereirereinsiesereresnsiensrerenna, 3-3|
Figure 3. DataModel: AttachObserver (Sequence Diagram)..............ccoueeeveveeivreniesernseaereseanens 3-7|
Figure 4. DataModel:ObjectAdded (Sequence DIagram)..............coeeevreeeveerverssrenseenseserana. 3-8|
Figure 5. DataModel:ObjectRemoved (Sequence Diagram)ccocoveveveveeoeersevesensreenenas 3-9|
Figure 6. DataModel:ObjectUpdated (Sequence DIagram)c...coveverveveueversreevererrersrernnans 3-10|
Figure 7. DataModel:UpdateObservers (Sequence Diagram).............cccceevevereerevieerenireirennanas 3-11]
Figure 8. DataTransferClasses (Class DIagram)cc.cuieveiierieivseieineesiesieesesieesresrenanas 3-12|
Figure 9. DMSULility (C1asS DIAGIaM)oovovoeeeeeeeeeeeeeieeeeeeeeeseeeesersreesenseseeensnsenensnsens 3-13|
Figure 11. R1B2GUIClassDiagram (Class Diagram)c.c.occevvevoreueereversnsssrerersssenenens 3-18|
Figure 12. MiscClasses (Class DIAgIamM)c.cveveueereerereererireieereteseeeseesseeesssesseesenssesseenssnsnes 3-23|
Figure 13. GUI:ChangeUserBasic (Sequence Diagram)...............ccovevevrverevirerernsrensrereinsrerennans 3-27|
Figure 14. GUIl:CommandObjectBasic (Sequence Diagram)............c.ccovceevreerereinreainrnseaenens 3-28|
Figure 15. GUI:DiscoveryBasic (Sequence DIagram).............c.oeovvueveeevoreesoreesrenssniesesensenes 3-29|
Figure 16. GUI:EventUpdatePushedBasic (Sequence Diagram)..............cocoeeevrveceersevsrensennas 3-30|
Figure 17. GUI:LoginBasic (SeqUENCe DIagram)..........c.c.cveveueererereersuerererrensrererereersrensnerenans 3-31|
Figure 18. GUI:LogoutBasic (Sequence DIagram).............ccccceveuevrevereirenereereireresresreresresnernnes 3-32|
Figure 19. GUIl:MakeMenuMultipleSelect (Sequence Diagram)ccceeerveeirerniesrernarnnnas 3-33|
Figure 20. GUI:MakeMenuNoneSelected (Sequence Diagram)..............ooooeeeeeeeeseeeeersevenanne 3-34]
Figure 21. GUI:MakeMenuSingleSelect (Sequence Diagram)...............c.covevervvveeveverevssenenens 3-35]
Figure 22. GUI:ShutdownBasic (Sequence DIagram)c.coeveverereererreeensrieenensreenaenanns 3-36|
Figure 23. GUI:StartupBasic (Sequence Diagram)........o.occoocieiricesrisesssessrissessessssisssssessssanees 3-37
Figure 24. GUI:SystemCommandBasic (Sequence Diagram).............cccceoveeereeervseainrnsernnenns 3-38|
Figure 25. DMSDialogs (Class DIaQram)cceveueveueeoreeereessersersesseesesesseseseeseensesessesns 3-39|
Figure 26. DMSModuleArchitecture (Class Diagram).............c.oooueveveeorereeerserseesensseesensnns 3-42|
Figure 27. DMSNavigatorSupport (Class DIiagram)............c.cveveueverevereueeverenensrrnsrerrersrernsnans 3-48|
Figure 28. GUIDMSModule:AddDMS (Sequence Diagram)........c..ocooverersssricssssesssesssnessanes 3-52
Figure 29. GUIDMSModule: AddDMSStoredMessageltem (Sequence Diagram).................... 3-54]
Figure 30. GUIDMSModule:BlankDMSInMaintenanceMode (Sequence Diagram)................ 3-55|
Figure 31. GUIDMSModule:CreateDMSStoredMessage (Sequence Diagram)....................... 3-57|
R1B2 GUI Detailed Design Rev. 0 iv 11/20/00

Figure 32. GUIDMSModule:DiscoverEventchannels (Sequence Diagram) 3-59|

Figure 34. GUIDMSModule:DiscoverObjects (Sequence Diagram)ccccoveevrivevrreeennn 3-60|
Figure 35. GUIDMSModule:DMSRemovedEvent (Sequence Diagram).................ccccevevee.... 3-61|
Figure 36. GUIDMSModule:DMSStateChangeEvents (Sequence Diagram) 3-62|
Figure 37. GUIDMSModule:Login (Sequence Diagram)ccc.cceovevevvrerernireesrerensrerennans 3-63|
Figure 38. GUIDMSModule:Logout (Sequence Diagram)............ooo.oceeeeeeeeeeeeceenesererrrensenns 3-64|
Figure 39. GUIDMSModule:ModifyDMSSettings (Sequence Diagram)c.ccccccevervennne. 3-65|
Figure 40. GUIDMSModule:ModifyDMSStoredMessage (Sequence Diagram)...................... 3-66|
Figure 41. GUIDMSModule:PolINow (Sequence Diagram).............cocoveveeevevererererenenerererennes 3-67|
Figure 42. GUIDMSModule:PutDMSInMaintenanceMode (Sequence Diagram).................... 3-68|
Figure 43. GUIDMSModule:PutOnline (Sequence DIagram)oeeeeeeeeeeeeeerseeenrsnsens 3-69|
Figure 44. GUIDMSModule:RemoveDMS (Sequence DIagram)ccccoveorveovnscninennnns 3-70|
Figure 45. GUIDMSModule:Reset (Sequence DIagram)c...cveveveverervevereeverereersrensrerenas 3-71]
Figure 46. GUIDMSModule:SetMessagelnMaintenanceMode (Sequence Diagram)............... 3-72|
Figure 47. GUIDMSModule:ShowTrueDisplay (Sequence Diagram).............cccccvevevervnee.. 3-73|
Figure 48. GUIDMSModule:Shutdown (Sequence Diagram).............covoeeeeeeeereeeeesererrrenens 3-74|
Figure 49. GUIDMSModule:Startup (Sequence DIagram).............ccocoeoeorreneiiseneneseseinannes 3-75|
Figure 50 GUIDMSModule: TakeOffline (Sequence Diagram)...........c.cooeeveveeevseveeenrerseenaens 3-76|
Figure 51. GUIDMSModule: TrafficEventResponse-BlankDMS (Sequence Diagram)............ 3-77|
Figure 52. GUIDMSModule:ModifyFP9500Settings (Sequence Diagram).............................. 3-78|
Figure 53. GUIDMSModule: TrafficEventResponse-SetDMSMessage

(SEQUENCE DIAGIAIM) ...ttt 3-79
Figure 54. GUIDictionaryModuleClasses (Class Diagram)ccoveeveverveveevensrensrernnnn. 3-80|
Figure 55. GUIDictionaryModule: DictionaryApprovedWordProperties

(SEQUENCE DIAGIAM)cveeveeeeee ettt ettt ettt eeterenerennanereenane 3-84|
Figure 56. GUIDictionaryModule:DictionaryBannedWordProperties (Sequence Diagram)...3-85|
Figure 57. GUIDictionaryModule:Discovery (Sequence Diagram)ccocooeeveeeererneennnes 3-86|
Figure 58. GUIDictionaryModule:EventHandling (Sequence Diagram)c..ccccoveuveneene.. 3-87|
Figure 59. GUIDictionaryModule:Shutdown (Sequence Diagram)c.cceeeevevevererennnnes 3-88|
Figure 60. GUIDictionaryModule:Startup (Sequence Diagram)c..ccccoeevveeierveresrenennanes 3-89
Figure 61. Dialogs (C1ass DIAGTAM).........o.ooveeeereeeeeeeeeeeseveeeesreensesereesneeseeeneeseeessneeseseeeesneeseeeens 3-90|
Figure 62. HARModuleArchitecture (Class DIagram)ccooeeoieriieensieiineieniscinneeens 3-92|

R1B2 GUI Detailed Design Rev. 0 v 11/20/00

Figure 63. NavigatorSupport (Cl1ass DIAGIAM)o..o.eweeeeeeeeeeeeeeeeeveeeeseeerseseeensreenseseeeesneeeseene 3-98|
Figure 64. GUIHARModule:AddHAR (Sequence Diagram)............ccccoevoveoineenncinneennns 3-101]
Figure 65. GUIHARModule:AddHARStoredMessageltem (Sequence Diagram)................... 3-102]
Figure 66. GUIHARModule:AddSHAZAM (Sequence Diagram)..............ccocveeveveverereenennane. 3-103]
Figure 67. GUIHARModule:AssociateMessageNotifier (Sequence Diagram)........................ 3-104|
Figure 68. GUIHARModule:BlankHAR (Sequence Diagram)oooeeevereceereveresvennn. 3-105|
Figure 69. GUIHARModule:BlankHARInMaintenanceMode (Sequence Diagram).............. 3-106|
Figure 70. GUIHARModule:CreateHARStoredMessage (Sequence Diagram)...................... 3-108|
Figure 171. GUIHARModule:CreateResponsePlanltem (Sequence Diagram)...................... 3-109|
Figure 72. GUIHARModule:DeleteHARMessageFromController (Sequence Diagram) 3-110|
Figure 73. Discovery:Basic (SEqUENCE DIAGraM) c.........o.ovoweeeeeeeeeeeeeeseeeeereeeeseeerseseseeseeensesns 3-111|
Figure 74. GUIHARModule:ListenToAudioClip (Sequence Diagram)ccccoceevrvrennne. 3-112]
Figure 75. GUIHARModule:ListenToTextClip (Sequence Diagram)............c.cccvevevvevernnne.. 3-113|
Figure 76. Login:Basic (Sequence DIagram)...........cc.ccveuveveeereererirrerereineeeeseresieensesressensseinas 3-114]
Figure 77. GUIHARModule:Logout (Sequence Diagram).............c.ccoveverervercvererernerensrerenan. 3-115|
Figure 78. GUIHARModule:ModifyHARSettings (Sequence Diagram)c..coun....... 3-117|
Figure 79. GUIHARModule:ModifyHARStoredMessage (Sequence Diagram) 3-118|
Figure 80. GUIHARModule:ModifySHAZAMSettings (Sequence Diagram)........................ 3-119|
Figure 81. GUIHARModule:PutHARInMaintenanceMode (Sequence Diagram) 3-120|
Figure 82. GUIHARModule:PutHARONIine (Sequence Diagram)............ccccccceevevireerernannne. 3-121|
Figure 83. GUIHARModule:PutSHAZAM InMaintenanceMode (Sequence Diagram).......... 3-122|
Figure 84. GUIHARModule:PutSHAZAMOnline (Sequence Diagram)ccccccccvrvevenee. 3-123|
Figure 85. GUIHARModule:RemoveHAR (Seqguence Diagram).............c.ccvevererveverrenererene. 3-124|
Figure 86. GUIHARModule:RemoveSHAZAM (Sequence Diagram)c..ccccveveeverennnne. 3-125|
Figure 87. GUIHARModule:ResetHAR (Sequence Diagram)cccoveveveverevircrernerennnnn. 3-126|
Figure 88. GUIHARModule:SetHARMessage (Sequence Diagram)..............cocoeuevevevennre... 3-127|
Figure 89. GUIHARModule:SetHARMessagelnMaintenanceMode (Sequence Diagram) ...3-128|
Figure 90. GUIHARModule:SetupHAR (Sequence Diagram)..............ccoveeeveeveevesevscsenrnae. 3-129|
Figure 91. Startup:Basic (Sequence DIiagram)............ccvevevevereeevvererereeenererereresensiereeseennaa, 3-130]
Figure 92. GUIHARModule:Shutdown (Sequence Diagram)............ccccccceevevveeeeiveesreenennane. 3-131|
Figure 93. GUIHARModule:StoreHARMessagelnController (Sequence Diagram)............... 3-132]
Figure 94. GUIHARModule: TakeHAROffline (Sequence Diagram)cccccovrvvvrvrrerenne. 3-133|

R1B2 GUI Detailed Design Rev. 0 vi 11/20/00

Figure 95. GUIHARModule:TakeSHAZAMOffline (Sequence Diagram)............................. 3-134|

Figure 96. GUIHARModule: TurnOffHARTransmitter (Sequence Diagram)......................... 3-135]
Figure 97. GUIHARModule:TurnOnHARTransmitter (Sequence Diagram).......................... 3-136|
Figure 98. GUIHARModule:ViewHARSIotUsage (Sequence Diagram)..........c..ccccveveeneee.. 3-137|
Figure 99. GUIHARModule:ViewHARStoredMessage (Sequence Diagram)....................... 3-138|
Figure 100. GUIMessageLibraryClasses (Class Diagram).............ooooeeeeeceeeeeeeeresereesevenrnn, 3-139|
Figure 101. GUILibraryModule:CreateLibrary (Sequence Diagram)cc.ccoccevverenencnne. 3-143]
Figure 102. GUILibraryModule:CreateStoredMessage (Sequence Diagram)......................... 3-144]
Figure 103. GUILibraryModule:DeleteLibrary (Sequence Diagram)c..cceueuennne..... 3-145|
Figure 104. GUILibraryModule:DeleteStoredMessage (Sequence Diagram)......................... 3-146|
Figure 105. GUILibraryModule:Discovery (Sequence Diagram)cooeeeeerrcvevenrennen. 3-147|
Figure 106. GUILibraryModule:HandleEventLibraryAdded (Sequence Diagram) 3-148|
Figure 107. GUILibraryModule:HandleEventLibraryNameChange (Sequence Diagram)....3-149|
Figure 108. GUILibraryModule:HandleEventLibraryRemoved (Sequence Diagram)............ 3-150|
Figure 109. GUILibraryModule:HandleEventStoredMessageAdded (Sequence Diagram)...3-151|
Figure 110. GUILibraryModule:HandleEventStoredMessageRemoved

(SR S TN) v 3-152|
Figure 111. GUILibraryModule:Login (Sequence Diagram)c..ccoooveeeereeveeeeserscnenrnne. 3-153]
Figure 112. GUILibraryModule:Logout (Sequence Diagram)ccccovevevereevevirerererenennnes, 3-154|
Figure 113. GUILibraryModule:SetLibraryName (Sequence Diagram)..............cccccccueuneen.. 3-155|
Figure 114. GUILibraryModule:Shutdown (Sequence Diagram)..............oocooecveurveverrcenn. 3-156|
Figure 115. GUILibraryModule:Startup (Sequence Diagram)ccoeovvverseiincnnnnennnn. 3-157|
Figure 116. GUIPIanClasses (Class Diagram)covcuveveuereoreueereuererereenseeensrernensreensrernsnans 3-158|
Figure 117. GUIPlanModule:AddPlan (Sequence Diagram).............c.coevevvereeveveeerevsreenaenanes 3-161|
Figure 118. GUIPIanModule:CreatePlanltem (Sequence Diagram)..............cccooveveevevervnennn.. 3-162|
Figure 119. GUIPIanModule:Discovery (Sequence Diagram)ocooeceeeeveeeeceevevevennn. 3-164|
Figure 120. GUIPlanModule:PlanAddedEvent (Sequence Diagram)ccccceeeveerennennnne. 3-165|
Figure 121. GUIPlanModule:PlanltemAddedEvent (Sequence Diagram) 3-166|
Figure 122. GUIPlanModule:PlanltemRemovedEvent (Sequence Diagram).......................... 3-167|
Figure 123. GUIPlanModule:PlanRemovedEvent (Sequence Diagram).............c..c.cccveunnene. 3-168|
Figure 124. GUIPlanModule:RemovePlan (Sequence Diagram)o.coeeeeeevereverrerncenn. 3-169|
Figure 125. GUIPlanModule:RemovePlanltem (Sequence Diagram)............ccccccvovvrrennnn. 3-170]
R1B2 GUI Detailed Design Rev. 0 vii 11/20/00

Figure 126. GUIPIanModule:Shutdown (Sequence Diagram)ooeeeeeeeeeerrvevrerenren. 3-171|
Figure 127. GUIPIanModule:Startup (Sequence Diagram)ccccovverieoineiinsenisennnns 3-172]
Figure 128. GUIResourcesModuleClasses (Class Diagram)occceverervevseverenensrennnn. 3-173]
Figure 129. GUIResourcesModule:Discovery (Sequence Diagram)..............ccccvevevevereenennnn.. 3-176|
Figure 130. GUIResourcesModule:EventHandling (Sequence Diagram)............................... 3-177|
Figure 131. GUIResourcesModule:Login (Sequence Diagram)............cocoeeeeweceeeeeevereennn. 3-178|
Figure 132. GUIResourcesModule:Logout (Sequence Diagram)..............ccoceevrereivsesernancnne. 3-179|
Figure 133. GUIResourcesModule:Shutdown (Sequence Diagram)cc.cccovevvevevennnne.. 3-180|
Figure 134. GUIResourcesModule:Startup (Sequence Diagram)................cccoevvevrverererennnene., 3-181]
Figure 135. GUITrafficEventModuleClasses (Class Diagram)ccccccevveeieereeireenennane. 3-182|
Figure 136. GUITrafficEventModuleUtilityClasses (Class Diagram)................ccoceuouunen... 3-190|
Figure 137. EventDialogs (Class DIagram)ccccueoureiniiiiinieiiisieiisieieieiesesiecsneiesesienees 3-194|
Figure 138. GUITrafficEventModule:AddCommL ogEntry (Sequence Diagram).................. 3-200|
Figure 139. GUITrafficEventModule:AddDeviceToResponse (Sequence Diagram) 3-201|
Figure 140. GUITrafficEventModule:AddEvent (Sequence Diagram)c..ccccovvenee... 3-203|
Figure 141. GUITrafficEventModule:AddPlanltemToResponse (Sequence Diagram)......... 3-204|
Figure 142. GUITrafficEventModule:AddPlanToResponse (Sequence Diagram).................. 3-205|
Figure 143. GUITrafficEventModule: AddResponseParticipation (Sequence Diagram)........ 3-207|
Figure 144. GUITrafficEventModule:AddResponsePlanltem (Sequence Diagram)............... 3-208|
Figure 145. GUITrafficEventModule:AddTextToEventHistory (Sequence Diagram) 3-209|
Figure 146. GUITrafficEventModule: AssociateEvent (Sequence Diagram) 3-210|
Figure 147. GUITrafficEventModule:ChangeEventType (Sequence Diagram)...................... 3-211]
Figure 148. GUITrafficEventModule:CloseEvent (Sequence Diagram)..............c.ccvveveee... 3-212|
Figure 149. GUITrafficEventModule:Discovery (Sequence Diagram)............c..ccceeveurennnee.. 3-214|
Figure 150. GUITrafficEventModule:ExecuteResponse (Sequence Diagram)........................ 3-215|
Figure 151. GUITrafficEventModule:ExecuteResponseltem (Sequence Diagram)................ 3-216|
Figure 152. GUITrafficEventModule:GetEventHistoryText (Sequence Diagram)................. 3-217|
Figure 153. GUITrafficEventModule:HandleEventCommLogEntryAdded

(SEQUENCE DIAGIAM) ...vcvievvveveteeieeeeee ettt ettt eee e eretetesessensserereseas 3-218|
Figure 154. GUITrafficEventModule:HandleEventEventAdded (Sequence Diagram) 3-219|
Figure 155. GUITrafficEventModule:HandleEventEventAssociated (Sequence Diagram)...3-220]
Figure 156. GUITrafficEventModule:HandleEventEventClosed (Sequence Diagram)......... 3-221]
R1B2 GUI Detailed Design Rev. 0 viii 11/20/00

Figure 157. GUITrafficEventModule:HandleEventEventDeleted (Sequence Diagram)........ 3-222|
Figure 158. GUITrafficEventModule:HandleEventEventTypeChanged

(T R R T) T — 3-223|
Figure 159. GUITrafficEventModule:HandleEventResponseParticipationAdded (Sequence

DI) v 3-224|
Figure 160. GUITrafficEventModule:HandleEventResponseParticipationRemoved

(S S TN) 3-225|
Figure 161. GUITrafficEventModule:HandleEventResponsePlanltemAdded

(SEQUENCE DIAGIAM) ...vvieviveveteeieeeee ettt ee ettt eee e er et esessenssererereans 3-226|
Figure 162. GUITrafficEventModule:HandleEventTrafficEventStateChanged

(e e 3-227|
Figure 163. GUITrafficEventModule:Login (Sequence Diagram)...........ccccceovveovrcvnincnnnn. 3-228|
Figure 164. GUITrafficEventModule:Logout (Sequence Diagram)..............coccccevevervverennnn.. 3-229|
Figure 165. GUITrafficEventModule:ModifyResponseParticipationData

(SEQUENCE DIAGIAM) ...ttt ettt es e st ereereresnerennarens 3-230|
Figure 166. GUITrafficEventModule:ModifyResponsePlanltemMessage

(S S TN) v 3-232|

Figure 167. GUITrafficEventModule:RemoveltemFromResponse (Sequence Diagram)......3-233|

Figure 168. GUITrafficEventModule:RemoveResponseParticipation

(Y e) N v, 3-234|
Figure 169. GUITrafficEventModule:SearchCommLog (Sequence Diagram)....................... 3-235|
Figure 170. GUITrafficEventModule:SetLaneConfiguration (Sequence Diagram)................ 3-236|
Figure 171. GUITrafficEventModule:Shutdown (Sequence Diagram)c.ccvevvee.... 3-237|
Figure 172. GUITrafficEventModule:Startup (Sequence Diagram)............ccccovevvevevereenennnne. 3-238|
Figure 173. GUIUserManagementClasses (Class Diagram)..................cccovevereoverevsrerernerennnnen. 3-239|
Figure 174. GUIUserManagementModule: AddUser (Sequence Diagram)............................. 3-242|
Figure 175. GUIUserManagementModule:ConfigureRoles (Sequence Diagram).................. 3-243|
Figure 176. GUIUserManagementModule:ConfigureUsers (Sequence Diagram).................. 3-244]
Figure 177. GUIUserManagementModule:CreateRole (Sequence Diagram) 3-245|
Figure 178. GUIUserManagementModule:DeleteRole (Sequence Diagram) 3-246|
Figure 179. GUIUserManagementModule:DeleteUser (Sequence Diagram) 3-247|
Figure 180. GUIUserManagementModule:Discovery (Sequence Diagram)................c.c....... 3-248|
Figure 181. GUIUserManagementModule:Forcelogout (Sequence Diagram)....................... 3-249|
Figure 182. GUIUserManagementModule:GrantRole (Sequence Diagram)........................... 3-250|

R1B2 GUI Detailed Design Rev. 0 iX 11/20/00

Figure 183. GUIUserManagementModule:Login (Sequence Diagram)..............o.cuoun...... 3-251|
Figure 184. GUIUserManagementModule:ModifyRole (Sequence Diagram)....................... 3-252|
Figure 185. GUIUserManagementModule:RevokeRole (Sequence Diagram)........................ 3-253|
Figure 186. GUIUserManagementModule:Startup (Sequence Diagram).............cccccvevveneen.. 3-254|
Figure 187. AudioClasses (Class DIagram)c...ceovevevirereorereinereriirereirercnsreresneresnsrenenans 3-255|
Figure 188. FilterClasses (Class DIaQram)oo.oeoueeoeeeeeeeeeeeeeeeeeeeeseseeseeensesensesesenseees 3-256|
Figure 189. GUIUtility: AddFilter (Sequence Diagram)c.ccoooeoireieiniineiciiseniccsicnes 3-261|
Figure 190. GUIUtility:BuildFilterHierarchy (Sequence Diagram)cccocoeovevvevsvnnnnn.. 3-262|
Figure 191. GUIULtility:CleanupSystemFilters (Sequence Diagram)cccccceevererennnne.. 3-263]
Figure 192. GUIUtility:CleanupUserFilters (Sequence Diagram)..............cccceecveverirerrerrennnas 3-264]
Figure 193. GUIULtility:InitializeSystemFilters (Sequence Diagram).............oocoeuvveverenene.. 3-265|
Figure 194. GUIULtility:InitializeUserFilters (Sequence Diagram)...........ccccoceovrevisviinennnn. 3-266|
Figure 195. GUIULtility:L oadFilters (Sequence Diagram)ooceeverervereeevererrerirrensrernnnns 3-267|
Figure 196. GUIUtility:ModifyFilterProperties (Sequence Diagram)............c.cccecveveeveurnnee. 3-268|
Figure 197. GUIULtility:RemoveFilter (Sequence Diagram).............cccovevevvverervirenirerernirernnnan. 3-269|
Figure 198. GUIUTtility:StoreFilterIDs (Sequence Diagram)...........oooeoeeeeeveneceeneverenrvennn. 3-270|
Figure 199. GUIUtility:UpdateForFilterChange (Sequence Diagram)............c.cccccoveerenennnne. 3-272|
Figure 200. GUIUtility:UpdateForObjectChanges (Sequence Diagram)..................c............. 3-273|
Figure 201. HARUTLility (Class DIagram)ccccoveveueeeveuiuerereenererereecnereieereesensrereereenenana, 3-274|
Figure 202. HARULtility:PushAudio (Sequence Diagram)..............cccoovevereereveeierneeireenannane. 3-279|
Figure 203. HARUMility:StoreAudioClip (Sequence Diagram)cooeeweeeeweeeeeevvenreenen. 3-280|
Figure 204. JavaClasses (Class DIAgram)cc.ceuieiriueiinieiniiieinieisieieeisieesieiesesieesnee e 3-281]
Figure 205. NavigatorClasses (Class DIagram)coccueeveueevereueerserireeersreensenenereensrensnns 3-285|
Figure 206. Navigator: AddNavigables (Sequence Diagram)cccccevevevevererevsrnenennane. 3-288|
Figure 207. Navigator:Initialize (Sequence Diagram)cccceeverevireeirerensenirerensrernnans 3-289|
Figure 208. Navigator:RemoveNavigables (Sequence Diagram)cococoeeeveeeecverevevnn.. 3-290|
Figure 209. Navigator:TreeSelectionChange (Sequence DIagram)...........ccccooeererrreseinencnnes 3-291|
Figure 210. SHAZAMUTLility (Class Diagram)............ooccoveveeereoreeeeersesseesensesesensesseensnsnes 3-292|
Figure 211. AudioCommon (Class DIagram)ccoeeveveveueevovirerereinererereresenerererercennane, 3-293|
Figure 212. CommLogManagement (Class Diagram)..............ccccvcveueereeereereieeeieireesreerennanas 3-296|
Figure 213. COMMON (ClaSS DIAGIAM)c.oveeeeeeeeeeeeeeeseeeeeeeeeeseerseeeeenseeesneesseeessesneesseees 3-298|
Figure 214. DeviceManagement (Class DIagram)..........cccoceoieioeioinieinscisieineeeisieces 3-301]

R1B2 GUI Detailed Design Rev. 0 X

11/20/00

Figure 215. DictionaryManagement (C1ass DIagram)coeeeeueeeeeeeeeeeenreenreveeernensenns 3-304|
Figure 216. DMSControl (Class DIAgram)cccoueoieiiniininiciieiisicinieiceeieeesie e 3-306|
Figure 217. PlanManagement (Class DIagram)c.c.cveveueveueeeereeenienerereensenerereensrensnans 3-315|
Figure 218. HARCONrol (Class DIagram)c.cveuveuereuriueereritrereieesereereteeteesenssssseenssnssenas 3-318|
Figure 219. ResourceManagement (Class Diagram)ccccoeeeverevireverererneenirereinsrernnans 3-324|
Figure 220. HARNOotification (Class DIagram)oo.ooeweeoeeeeeeeeeeeeeeeeseeenseenseserenseenseens 3-328|
Figure 221. LibraryManagement (Class DIagram)ccccoeoeoiineinineneinieiecsiesiecaiceas 3-331|
Figure 222. LogCommon (Class DIagram).............coueveeeueveeeeersreeersensseesenssseensensesesenanas 3-334|
Figure 223. TrafficEventManagement (Class Diagram)...............cccvoveveverererevenenererercrnnnan, 3-336|
Figure 224. TrafficEventManagement2 (Class Diagram)...............c.ccoevevveeeeiveeieereeseerennane, 3-341|
Figure 225. UserManagement (C1ass DIagram)............o.coooeoreeeeeeeeeseeeeeeeeenseeenseseeeesneenseens 3-345|
Figure 226. UtilityClasses (Class DIAgram)............couoevriiniiieiiniinisiciisiecesiceisieieeeiceesienes 3-347|
Figure 227. UtilityClasses2 (C1ass DIagram)............c.c.evevereerereverereersrrensererereenseeenerereensrennsns 3-354|
Figure 228. Databaselogger:getEntries (Sequence Diagram).............c.cveeeveveeereerieeneensnnnnas 3-356|
Figure 229. DictionaryWrapper:checkForBannedWords (Sequence Diagram) 3-358|
R1B2 GUI Detailed Design Rev. 0 Xi 11/20/00

1 Introduction

1.1 Purpose

This document describes the detailed design of the Chart Il Graphical User Interface (GUI)
application for Release 1, Build 2. This design is driven by the Release 1, Build 2 requirements
as stated in document M361-RS-002R1, “CHART Il System Requirements Specification
Release 1 Build 2” and further refines the high level design presented in document M362-DS-
005, “R1B2 High Level Design™.

1.2 Objectives

The main objective of this design is to provide software developers with a framework in which to
provide implementation of the software components used to satisfy the requirements of release 1,
build 2 of the Chart Il system user interface. This document focuses on the client side of each of
the system use cases.

1.3 Scope

This design is limited to Release 1, Build 2 of the Chart Il system and the requirements as stated
in the aforementioned requirements document.

1.4 Design Process

As in the high level design, object-oriented analysis and design techniques were used in creating
this design. As such, much of the design is documented using diagrams that conform to the
Unified Modeling Language (UML), a de facto standard for diagramming object-oriented
designs.

In the high level design, system interfaces were identified and specified. These interfaces were
partitioned into logical groupings of packages. This design serves to fill in the details necessary
to implement each of the system interfaces identified in the high level design.

In this design, each package identified in the high level design is addressed separately with its
own class diagram and sequence diagrams for major operations included in the package’s
interfaces. Additionally, packages needed for implementation but not present in the high level
design are included in this design, with each of these also having its own class diagram and
sequence diagrams. Packages are also included for third party software that is needed by the
CHART Il software, such as the ORB and Java classes. Only classes and methods shown on the
sequence diagrams are included in diagrams for third party products.

The design process for each package involved starting with a class diagram including interfaces
from the high level design, and filling in details to the class diagram to move toward
implementation. Sequence diagrams were then used to show how the functionality is to be
carried out. An iterative process was used to enhance the class diagram as sequence diagrams
identified missing classes or methods.

R1B2 GUI Detailed Design Rev. 0 1-1 11/20/00

1.5 Design Tools

The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the Chart Il project, R1B2 configuration,
SystemDesign phase, A system version is included for each software package.

1.6 Work Products
This design contains the following work products:

e A UML Class diagram for each package showing the low level software objects
which will allow the system to implement the interfaces identified in the high level
design.

» UML Sequence diagrams for non-trivial operations of each interface identified in the
high level design. Additionally, sequence diagrams are included for non-trivial
methods in classes created to implement the interfaces. Operations that are considered
trivial are operations that do nothing more than return a value or a list of values and
where interaction between several classes is not involved.

R1B2 GUI Detailed Design Rev. 0 1-2 11/20/00

2 Key Design Concepts

This section provides a high level description of various elements of the design that warrant
special attention either due to their technical complexity, central role to system operations, or
deviation from previous project practice. For a thorough discussion of how the CHART Il GUI

fits into the architecture of the CHART Il system please refer to the Software Architecture
section of document M-361-DS-003R0,
“CHART Il GUI High Level Design For Release 1 Build 1”.

2.1 Voice recording, conversion and playback

The CHART II GUI allows an operator to enter a message for activation on a HAR device or
storage in a message library in either text or voice format. If the operator opts to record a voice
format message, the GUI records the operator’s voice via a microphone device attached to the
workstation.

The GUI utilizes the javax.sound package to capture the operator’s voice. The GUI also allows
an operator to listen to the contents of a HAR message using the sound card and speakers
attached to his/her workstation. The message is composed of multiple message clips. Each clip is
either a text clip, a voice data clip, a voice clip, or a pre-stored message clip. Each of these types
of message clips requires slightly different processing in order to be played back to the user in an
audible format. A text message clip must be converted into an audible format by the text to
speech conversion engine before it can be played. A voice data clip requires no conversion
because it contains the binary data required for playback. In this case, the GUI will simply play
the data contained in the clip directly back to the user. A voice clip is a message clip used by the
system to pass a HAR message around without actually passing the binary audio data. Instead,
the clip contains a reference to a CORBA object that can be called to get the binary data via a
streaming interface if the data is needed. If the GUI encounters this type of clip, it will call the
remote CORBA object and request that the binary data be streamed. A pre-stored message clip is
a clip that represents a message that has been stored in a slot on the HAR controller. When the
GUI encounters this type of message clip, it will check the configuration object for the HAR and
get the message clip stored in the specified slot. The clip in the slot will then be processed as
previously mentioned to get the audio data. In all cases, once the GUI has obtained the binary
audio data it utilizes the javax.sound package to play the data back for the user through the
workstation’s sound card and speakers.

2.2 Spell checking

When an operator is entering message text for display on a HAR or DMS device or for storage in
a library message, the system will provide assistance in the form of a simple spelling check. The
check may be performed at the operator’s request while editing the message and will be
performed automatically when the operator hits the OK button if the message has been modified
since the last spell check. The spell check processing will be performed as follows: Beginning at
the start of the text, each word will be checked against a list of approved words in the system. If

R1B2 GUI Detailed Design Rev. 0 2-1 11/20/00

the word is not a known approved word, a list of (up to three) suggestions will be presented to
the user. The suggestions will be composed of the approved words that are lexigraphically
closest to the word being checked. The operator will be allowed to ignore the suggestion, ignore
all cases where this word exists in the message or replace the word with one of the suggested
words. After the user selects his/her option, the system will proceed to the next word and the
process will be repeated.

2.3 User and system profiles

In order to allow an operator to modify the working environment of the CHART Il system and
allow that environment to maintain consistency across workstations, the system will record
properties in profiles. The system will use three types of profiles to store preferences; a system
profile, a user profile, and a user properties file. A system profile stores properties that pertain to
all users regardless of the workstation where they are working. A user profile stores properties
that pertain to a particular user regardless of the workstation where the user is logged in. A user
properties file stores properties that pertain to a particular user at a particular workstation. In
order to make the information in a user or system profile available regardless of the workstation
where the user logs in, the properties are stored in the user management database. The user’s
profile and the system profile are each a collection of key/value pairs. The software functions as
follows: When a user logs in his/her user profile and the system profile are retrieved from the
user management database and are stored in a temporary Java properties object on the
workstation. Property queries are performed against the local properties object for efficiency
sake. If the user modifies an existing property or adds a new property, the change is made to the
local properties object and to the user or system profile in the user management database as
appropriate. Thus, the modifications are available in the profile the next time the user logs in at
any workstation.

2.4 Factory choice when creating new objects

When an operator is adding a new object to a distributed system, it is necessary to determine
which service should be responsible for serving the new object. In the CHART Il system, each
service that is capable of serving a particular type of object publishes a factory in the CORBA
trading service. Each factory is named according to the district or region from which it is served.
For maximum configuration flexibility, the GUI will present the user with this list of factories on
the object creation dialog. If the operator selects a particular factory, the system attempts to
create the new object using that factory. Any errors encountered are reported to the user and no
further processing is performed until the operator takes further action. Along with the list of
factories, the operator is presented with an option to allow the software to ‘Auto-select’ a factory
to add the new object to. If this option is selected, the software attempts to add the new object to
each factory in the system, in succession, until it is successfully added to a factory. An error is
reported if and only if no factory in the system can create the new object.

R1B2 GUI Detailed Design Rev. 0 2-2 11/20/00

2.5 Error Processing

Because CHART Il is a distributed object system, it is expected that any call to a remote object
could cause a CORBA exception to be thrown. All software calls to remote objects handle
CORBA exceptions and the processing is not shown on sequence diagrams within this design
except where it serves to illustrate a design point.

Additionally, CHART Il object interfaces explicitly declare exceptions that may be thrown when
a particular method is invoked. All CHART Il defined exceptions contain information that can
be displayed to the user as well as debugging information. The CHART Il GUI handles errors in
the following manner. All user displayable error information is displayed to the user in a status
pane at the bottom of the active dialog box or in the command status window if no dialog is
available. The GUI also utilizes the Log utility class to maintain a flat file that contains
debugging information. Each entry in the file contains the name of the class that logged the
entry, the date and time the entry was logged, and descriptive text of the error that occurred. The
log utility also provides the ability for a stack trace to be printed to the file to accompany the
error. This feature is reserved for use when an error condition is caught and the exact cause of
the error condition is not known, or when it is known that the caller of the method performing
the log passed invalid data. Log files created by the Log utility class are self-cleaning and are
automatically removed from the system when they reach a certain age, as specified in a
configuration file.

The CHART Il GUI also adds a software communications failed state to each remote object.
This state is used to indicate that a remote object was not reachable the last time that the system
attempted to communicate with it. This information is essential in a distributed software system
where objects become unavailable temporarily due to server or network outages. The GUI tracks
this state as follows. Each time the GUI attempts an operation on a remote object, if the object
cannot be reached, it will be put into a software communications failed state. If the object can be
reached, regardless of whether the operation succeeds or throws a defined exception, the GUI
marks the object as not being in a software communications failed state.

R1B2 GUI Detailed Design Rev. 0 2-3 11/20/00

2.6 Installable Modules

The CHART Il GUI application has been designed as a core GUI module and a collection of
installable modules. The core GUI module provides access to the services and data needed by
any installable module and also provides the main windows of the application. Each installable
module adds a coherent set of functionality and windows that are not required by other modules.
This design serves to break the application into understandable packages and has the added
benefit of allowing for scaled down deployments with limited functionality. At initialization the
core GUI module reads a Java properties file and determines which installable modules should
be instantiated. The core GUI module then coordinates the activities of each of the installed
modules while the application is running. Significant events, such as a user logging in or out of
the application, are passed along to each installed module providing them an opportunity to
perform cleanup activities.

Throughout the design, there are instances where a particular module needs to access the services
of another installable module. This type of coordination typically involves registering one
module as a supporter of another module. A good example of this can be observed in the plan
module. The plan module can create a plan without the support of any other module. However, it
cannot add any items to the plan because the DMS or HAR installable modules must create
them. Thus, the plan module provides an API for other modules to call to register as a plan item
creation supporter. The plan module may then delegate creation of new plan items to the
installed creation supporters. In all cases where a module relies on a call to another installable
module the call is made with the expectation that an exception may be thrown indicating that the
other module does not exist. If this is the case, the calling module will handle the exception and
continue processing as normal. The services provided by the called module will not be available
during this instance of the GUI application because the module was not installed.

2.7 Startup and Shutdown

In order to startup correctly, the CHART Il GUI requires a CORBA trading service. It will
search the trading service for the OperationsCenter object that it will be utilizing to allow a user
to login. Both the location of the CORBA trading service and the name of the operations center
that the user will log in at are configurable in the GUI properties file which resides in the GUI
directory after installation. If the trading service is not available, or the desired operations center
is not available, the GUI will issue an error message to the operator and will allow the user to
shut it down. The GUI has no other dependencies on external services, nor does it have any
dependencies on the order in which installable modules are installed. At startup the GUI will
read the properties file and will construct an instance of each of the installable modules listed.
After all modules have been constructed, the startup method of each module is called. This
guarantees that when any particular module’s startup method is being performed, any other
modules that it interacts with will have already been constructed. At shutdown, the GUI calls the
shutdown method of each installed module. After shutting down all modules, it deactivates the
ORB and POA and exits.

R1B2 GUI Detailed Design Rev. 0 2-4 11/20/00

2.8 Packaging

This software design is broken into many packages of related classes. The table below shows
each of the packages along with a description of each.

CORBAUtilities

DataModel
DataTransfer

DMSUtility

GUI

GUIDMSModule
GUIDictionaryModule
GUIHARModule
GUIMessageL.ibraryModule
GUIPlanModule

GUIResourcesModule

GUITrafficEventModule

R1B2 GUI Detailed Design Rev. 0

This package contains classes included in the third party
ORB product used for implementation. Only classes that are
directly referenced from diagrams for CHART Il software
are included in this package’s diagrams.

This package includes classes that are used to provide an
implementation of the subject observer design pattern.

This package contains classes that are used to support drag
and drop operations in the CHART Il GUI.

This package contains utility classes that are shared among
the server and GUI DMS modules. Examples of DMSUtility
classes are the MultiConverter and implementation of value
types defined in the DMSControl system interfaces.

This package contains classes that are core to the CHART I
GUI application such as the main GUI toolbar window, the
command status window and the command failures window.

This package contains an installable GUI module that
provides all DMS related functionality.

This package contains an installable GUI module that
provides all dictionary-related functionality.

This package contains an installable GUI module that
provides all HAR and SHAZAM related functionality.

This package contains an installable GUI module that
provides all message library related functionality.

This package contains an installable GUI module that
provides all plan-related functionality.

This package contains an installable GUI module that
provides all shared resource related functionality. This
includes the transfer shared resources dialog.

This package contains an installable GUI module that
provides all traffic event related functionality. This package
also includes the client side functionality for the Comm. Log.

2-5 11/20/00

GUIUserManagementModule
GUIUtility

HARUtility

JavaClasses

Navigator

SHAZAMUtility

SystemInterfaces

Utility

This package contains an installable GUI module that
provides all user management related functionality.

This package contains classes that are used by many
installable GUI modules.

This package contains HAR related utility classes shared by
the server and GUI.

This package contains classes included in the Java
programming language. Only classes that are directly
referenced from diagrams for CHART Il software are
included in this package’s diagrams.

This package contains classes that implement the Navigator
window of the CHART Il GULI.

This package contains SHAZAM related utility classes
shared by the server and GUI.

This package contains the CORBA interfaces and related
definitions for the CHART Il system. These interfaces and
classes define the IDL for the CHART Il system.

This package contains utility classes shared by other
packages, including classes used to access the database and
the OperationsLog class.

The remainder of this document contains detailed designs of each of the above packages.

R1B2 GUI Detailed Design Rev. 0

2-6 11/20/00

3 Package Designs

3.1 CORBAUtilities

3.1.1 Class Diagrams
3.1.1.1 CORBACIasses (Class Diagram)

The CORBAUTtilities package exists to provide reference to classes that are supplied by the
ORB Vendor and are referenced by other packages’ class or sequence diagrams.

com.ooc.CosEventChannelAdmin.impl.EventChannel

CosEventChannelAdmin. CosEvent.
EventChannel PushConsumer CosTrading.Register
CosTrading.Lookup
for_consumers() push export
for_suppliers() withdraw query
destroy()
ORB
POAManager POA
init()
resolve_initial_references()
string_to_object() activate() activate_object(Servant obj)
object_to_string() deactivate() deactivate_object(object_id)
run() deactivate()
the_POAManager() : POAManager
create_POA() : POA

Figure 1. CORBACIasses (Class Diagram)

3.1.1.1.1 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor’s implementation of a CORBA event channel. The event
service provided by the vendor simply serves one of these objects. The Extended Event
Service serves a factory that allows multiple instances of the vendor supplied event channel
to be created.

R1B2 GUI Detailed Design Rev. 0 3-1 11/20/00

3.1.1.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.1.1.1.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.1.1.14 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

3.1.1.15 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for
object publication and discovery respectively. The CosTrading.Register is the interface to
the trading service that server applications use to publish objects in order to make them
available for client applications to discover.

3.1.1.1.6 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic
mechanism by which client applications send requests to server applications and receive
responses to those requests from servers.

3.1.1.17 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

3.1.1.1.8 POAManager (Class)

This interface represents the portable object adapter manager used to activate and deactivate
the POA.

R1B2 GUI Detailed Design Rev. 0 3-2 11/20/00

3.2 DataModel

3.2.1 Class Diagrams

3.2.1.1 DataModelClasses (Class Diagram)

The data model classes represent a collection of objects which, when altered via the
DataModel, will notify observers that they have been modified. The notification will be
delivered in the form of a call to the observer’s update() method and will include a
collection of changes that have occurred in the system in the preceding interval. Each
change is either an object added change, an object removed change, or an object updated
change. If the change is an object updated change it may include hints that help an observer
determine if it needs to take any action based on the change.

Identifier
m_id
UpdatePriorityLevel
dentifier(byte[] chartiD)
equals(Object obj) m_delay
ashCode() DataModel m_priority
byte[] getiD()
T 1 5| run()
getPriority() 10+ ModelObserver
i getObject(keyObject) isAttached(observer)
getObjectsOfType(class) attach(observer)
This is the class getAllObjects() detach(observer) - @@
which will be attachObserver(modelObserver, priority) getUpdatelnterval() update(ModelChanges changes)
used as a key to detachObserver(modelObserver) objectAdded(keyObject, object)
store and look up objectAdded(keyObject, object) objectUpdated(keyObject, updateHint) 1
all Identifiable objects objectUpdated(keyObiect, updateHint) objectRemoved(keyObject)
objectRemoved(keyObject) setUpdatelnterval()
setUpdatelnterval(priority, interval) -getChangeCollection(Class checkClass)
getUpdatelnterval(priority) :3::8';:2?5:,’;(")“‘R“e‘<>
1 -updateObservers() GUIModelObserver
1
1 ChangeCollection . .
1 1| m_class
java.util Hashtable = ModelChange
Dg getChanges()
1 getChangeClass()
addChange(keyObject, objectChange)
isForClass(Class checkClass) ggtgggggg& s checkCiass)
getClasses(
addChanges (checkClass, changes)
hasChanges ()

! 1 1
javalang.Runnable] GUIUpdater
1

run()

ObjectChange

m_object

getObject()

ObjectAdded ObjectUpdated ObjectRemoved

addHint()
getHints()
numHints()

1

UpdateHint

isEqual(rhs)

Figure 2. DataModelClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-3 11/20/00

3.2.1.1.1 ChangeCollection (Class)

This class represents a collection of object changes. All object changes in the collection
must be for objects of the same type. Object type is determined by making the Java call
getClass(). This allows an observer to look at one object in the collection and determine if it
is interested in changes to this type of object. If the observer is not, it may ignore the entire
collection.

3.2.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.2.1.1.3 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.2.1.1.4 GUlUpdater (Class)

This class is used to send all changes to GUIModelObservers in the GUI event dispatch
thread. It does this by storing the changes until the dispatch thread calls the run() method.

3.2.1.1.5 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.2.1.1.6 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.2.1.1.7 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.2.1.1.8 ObjectRemoved (Class)

This class is used to indicate that the object it represents was removed from the DataModel.

R1B2 GUI Detailed Design Rev. 0 3-4 11/20/00

3.2.1.1.9 UpdateHint (Class)

This interface must be implemented by all objects that are to be used as update hints. An
update hint is a concept that is negotiated between a (subject) object and observers that are
interested in that object. The data model makes no assumptions about how the hints will be
used. The data model will invoke the isEqual method of the update hint to ask it to
determine if it is equivalent to another hint. This allows the model to perform update
optimizations by not sending notification to observers of two updates with equivalent hints
in the same period. An example of how an update hint would be used follows: A DMS
object has state variables that track the current message being displayed and the current
latitude and longitude location of the sign controller. Because the system map requires
significant processing load to redraw and needs only be notified if the latitude or longitude
of the DMS changes the DMS and map view use a DMSMapChange hint. When the DMS
object has a state change to the latitude or longitude property to report, that change is
reported by calling objectUpdated and passing a DMSMapChange hint. When it has other
changes that are not state changes to the latitude or longitude properties, it reports those
changes to the DataModel by calling objectUpdated passing a DMSNonMapChange update
hint. The map view will only redraw the DMS if the ObjectUpdate contains a
DMSMapChange hint.

3.2.1.1.10 ModelChange (Class)

This class is used to convey changes to observers of the DataModel. It contains all
ObjectChanges for a particular update priority level for a particular period of time.

3.2.1.1.11 ModelObserver (Class)

This interface must be implemented by any object that would need to attach to the
DataModel as an observer and get updated as system objects are added, deleted or changed.

3.2.1.1.12 ObjectAdded (Class)

This class is used to indicate that the object it represents was added to the DataModel.

3.2.1.1.13 ObjectChange (Class)

This class represents the changes to a particular object stored in the DataModel for a
particular period. The change may be that this object was added to the model, removed
from the model, or updated during this period.

R1B2 GUI Detailed Design Rev. 0 3-5 11/20/00

3.2.1.1.14 ObjectUpdated (Class)

This class indicates that an object that was already in the model has been updated. The
update may be specific to certain parts of the object, and the UpdateHint objects are used to
specify which data members within the object were changed. If there are no hints in the
ObjectUpdated, it signifies that the entire object has been changed so the observer must
query the object for any data members that it is displaying.

3.2.1.1.15 UpdatePriorityLevel (Class)

This class represents a particular priority update level. When an observer attaches to the
data model an update priority level is specified. The system currently supports five levels of
priority ranging from real time updates for animated displays to delayed updates for
windows which can tolerate not being notified for a significant period of time when a
change occurs to the system data model. Each time an object is modified it is added to the
ChangeCaollection for all priority levels. The notification of observers simply happens at
longer and longer intervals as the priority level decreases. Thus, an observer of the data
model connected at real time may be updated three times in one second while a lower
priority observer may only be updated once at the end of the second. However, both
observers will be told about the exact same changes that occurred during the second.

R1B2 GUI Detailed Design Rev. 0 3-6 11/20/00

3.2.2 Sequence Diagrams

3.2.2.1 DataModel:AttachObserver (Sequence Diagram)

This diagram shows how an observer is attached to the DataModel for the purpose of
receiving updates. The DataModel’s attachObserver method is called, and if the priority
level is supported by the DataModel, the observer will be attached at that priority level. The
result of this is that the observer will be updated periodically (with the period depending on
the priority level) after changes are made to the objects through the DataModel.

X

Observer DataModel UpdatePriorityl evel
Attacher
attachObserver
iori First make sure the
getPriorityLevel observer is not attached to
| any priority level.

[priority level not found]___:
InvalidPriorityLevel o

(for each priority level) ;
detach

attach
See the diagram
DataModel:UpdateObservers
Success for a description of how

the observers are updated

on this thread once it is running.

Figure 3. DataModel:AttachObserver (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-7 11/20/00

3.2.2.2 DataModel:ObjectAdded_ (Sequence Diagram)

This diagram shows the steps taken when an object is added to the DataModel. First, the
Object and the Key are passed into the DataModel’s objectAdded method. The DataModel
checks whether the object was added before, and if so, the object will not be added again.
The DataModel then calls each of the PriorityLevel objects’ objectAdded methods so that
observers of all priority levels can be updated independently. The PriorityLevel object then

checks its ChangeCollection objects to see if a ChangeCollection exists for the class of

object which is being added. If not, it will create a ChangeCollection to store all changes for
that class. The PriorityLevel then creates an ObjectAdded object to represent the change,
then adds it to the ChangeCollection.

Key object to use for
subsequent lookups of
this value object.

o

X

Object
Creator

[—creat

Value object to be added
to the data model.

Object

DataModel

Object
(e.q. Identifier)

objectAdded

UpdatePriorityLevel

java.util. Hashtable

i [*for each priority level]
objectAdded)

put

L— previous value object with specified ey

getCla

put

[* for each change collection

+——until matching class is found (or not)|—>

getClass

[no matching class found]
create

—create ObjectAdded

addChange

put

Figure 4. DataModel:ObjectAdded_ (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-8

11/20/00

3.2.2.3 DataModel:ObjectRemoved (Sequence Diagram)

This diagram shows what happens when an object is removed from the DataModel. The
Key object is passed into the DataModel’s objectRemoved method, which removes the
stored object in the DataModel. If the object was removed (i.e., if it was found), the
DataModel then calls the objectRemoved method for each UpdatePriorityLevel so that each
priority level of observers will be updated independently. The UpdatePriorityLevel will
check to see if it has a ChangeCollection to store changes for the class of the object. It will
create a new ChangeCollection if necessary. The UpdatePriorityLevel will then create an
ObjectRemoved object to represent the change. This object will be added to the
ChangeCollection for the object’s class. Java’s garbage collection ensures that the object
will not actually be deleted until the last reference to the object is removed; therefore, since
object references are stored in the ChangeCollection objects, each object will exist at least
until the last observer is updated on the lowest priority level. Observers have the
responsibility to remove all of their references to the objects when their update method is
called; otherwise, memory leaks will occur.

Stored '
RS]{;J 3\% . Dbect DataModel UpdatePriorityl evel ChangeCollection | iava.util.Hashtable

(e.q. Identifiable)

Key Object
creat (e.q. Identifier

objectRemoved:

equal

[object not found]
false

[* for each priority level N

objectRemoved

I
getCl [* for each change collection

—until matching class is found (or not)}—>
getClass

[no matching class found]

——create ObjectRemoved

addChange

hashCode

Figure 5. DataModel:ObjectRemoved (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-9 11/20/00

3.2.2.4 DataModel:ObjectUpdated (Sequence Diagram)

This diagram shows what happens when an object is updated through the DataModel. The
caller passes in the Key object and an optional UpdateHint object. If an object is found with
the Key, the DataModel will then call each UpdatePriorityLevel’s objectUpdated method so
that each priority level will be updated independently. The UpdatePriorityLevel checks to
see if a ChangeCollection exists for the class of object that is being changed, and a
ChangeCollection will be created if necessary. If there is a previous change for the object
and the existing change is ObjectRemoved or ObjectAdded, the update will be ignored.
Otherwise, the update hint will be combined with the existing update hints (if any) so that
the resulting hints are a union of all hints which have been accumulated. The changes will
be distributed to the observers when the next period expires for the UpdatePriorityLevel.

o

; : Stored
Object Object
Updater e.g. Identifiable
Key Object
create (e.q. dentifier)
create /‘ UpdateHint

DataModel

-objectUpdated:

UpdatePriorityL evel

‘ ObjectUpdated

ChangeCollection

java.util. Hashtable

rashCode-

equals

[object not found]
false

[* for each priority level]
objectUpdated

getClas!

e [ObjectAdded change already exists]____
return

[ObjectRemoved change

[* for each change collection
until matching class is found (or not)——>

getClass}

[no matching class found!
create |

class found]

getChange

already exists]
return

[ObjectUpdated change already exists

Koo but contains no hints}--
return

[ObjectUpdated change
-already exists|————>
numHints

[change does not
-already exist———>4

create

[ObjectUpdated created]
addChange

ashCode

[ObjectUpdated already
i__existed but new Upda\eHim9
null

removeAllHints

[ObjectUpdated already
i _existed and new UpdaleHinle
is not null]

addHint

Figure 6. DataModel:ObjectUpdated (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-10

11/20/00

3.2.2.5 DataModel:UpdateObservers (Sequence Diagram)

This diagram shows how the observers are updated after changes have occurred to objects
through the DataModel. The UpdatePriorityLevel thread decides that it’s time to update the
observers because the period has run out. It adds all of the changes that have been
accumulated in the ChangeCollections and stores them in a ModelChange object. Then it
distributes the ModelChange to all observers. If the observer is not a GUIObserver, it is
updated on the UpdatePriorityLevel thread. However, GUIObservers must be updated on
the main event thread, so the SwingUtility’s invokeLater method is called to execute the
update on the main event thread. After all observers are updated, the ChangeCollections are
deleted to flush them. The UpdatePriorityLevel will then sleep until the next scheduled

This will execute the
following loop until the
| program shuts down. avax.Swin
UpdatePriorityLevel gfh ;gﬂgg ggg;eng:eé:# \t,l\?hr;t Swing' Utilities ModelObserver GUIModelObserver java.lang.Thread
time period is associated with
DataModel the priority level.

create 5| ModelChange

addChanges:

[if not GUIModelObserver]
update

Double-nested [if GUI observer]
loop (for each . create GUIUpdater
change collection,

for each observer) |,

invokeLater

Remove
All

Change This will be executed
Collections sometime later on the
main event dispatching
thread to eliminate
problems with updating [.
windows. update

Figure 7. DataModel:UpdateObservers (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-11 11/20/00

3.3 DataTransfer

3.3.1 Class Diagrams

3.3.1.1 DataTransferClasses (Class Diagram)

Figure 8. DataTransferClasses (Class Diagram)

3.3.1.1.1 Droppable (Class)

Droppable

allowDrop(int, Object(]) : int
handleDrop(int, Object]]) : int

This interface must be implemented by any object wishing to take part in a drag and drop

operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

R1B2 GUI Detailed Design Rev. 0

3-12

11/20/00

3.4 DMSUtility

3.4.1 Class Diagrams

3.4.1.1 DMSUtility (Class Diagram)

This Class Diagram shows classes related to the DMS that are used by both the GUI and the
DMS service. Most of these classes are implementations of value type classes defined in the
system interfaces (IDL).

DMSStatus

Chart2DMSStatus

Identifier m_controlingOpCenteriD
string m_controlingOpCenterName
NetworkC: 'm_NetworkC

factory createChart2DMSStatus() : Chart2DMSStatus

Chart2DMSStatusimpl

FP9500Status
e octet m_currentMsgNum
octet m_currentisgSource
factory createFP9500Status() : FP9500Status
FP9500Statusimpl
coe

DMSRPIData

Chart2DMS m_dms
DMSMessage m_message

getDMS() : Chart2DMS

setMessage(DMS|
factory create DMSRPIData()
DMSRPIData

DMSRPIDatalmpl

DMSConfiguration
N

Chart2DMSConfiguration

long m_fmsDevicelD
identifier m_owningOrgiD

string m_agentHostName

string m_SNMPCommunityName
long m_pollinterval

long m _poliCycleDuration

string m_devicePhoneNumber
string m_deviceCommString
DevicelModellD m_deviceModellD
long m_deviceDropAddress

long m_deviceResponseTimeout
string m_deviceMaxBaudRate
DMSMessage m_shazamMessage

factory createChart2DMSC

: Chart2DMSConfigurat

Chart2DMSConfigurationimpl

7

FP9500Configuration

DMSPlankemData

Identifier m_dmsID
StoredMessage m_storedMessage
identifier m_storedMsgID

getDMSID(: Identifier

SetDMS(DMS) : void

getMessagelD Identifier
setMessage (StoredMessage) : void

DMSPlanitemDatalmpl

DictionaryWrapper

~CosTrading.Lookup m_trader
-ORB

-java.util. Vector m_dictionaries
-javalang.Object m_loc
long m JastTraderLookupTimestamp

get():DictionaryWrapper
setWrapperSettings(ORB, Cos Trading.Lookup):void
9

getBannedWords(Access Token):WordList

removeBannedWordList(Access Token,WordList):void

addBannedWordList(Access TokenWordList):void

checkForBannedWords(string messageToCheck,
string delimiters,

getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void

v string delimiters,

~DictionaryWrapper():DictionaryWrapper
~getDictionary():Dictionary

DictionaryWordType wordType):WordList

removeApprovedWordList(AccessToken, WordList):void
(string messageToCheck,

DictionaryWordType wordType):SuggestionList

FP9500Configurationimpl

Message

validateMessageContent(:void;

DMSMessage

octet m_dmsMessageBeacon
MULTISTring m_dmsMessageMultiString

getBeaconState() : octet

getMultiString() : MULTIString

getMinimumCharacters() : long
reateDi ILTiString

i
octet beaconState)

DMSMessage

Figure 9. DMSUtility (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

3-13

11/20/00

34.1.11 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to Chart Il
processing. Such information includes how to contact the sign under Chart 1l software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.4.1.1.2 Chart2DMSConfigurationlmpl (Class)

The Chart2DMSConfigurationlmpl class provides an implementation for the abstract
Chart2DMSConfiguration class. It implements get and set methods to access and modify
values of the configuration of a DMS. The configuration information stored here is
normally fairly static: things like the size of the sign in characters and pixels, its name and
location, and how to contact the sign (as opposed to dynamic information like the current
message on the sign, which is stored in an analogous Status object).

3.4.1.1.3 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to Chart Il processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

34.1.14 Chart2DMSStatusimpl (Class)

The Chart2DMSStatusImpl class provides an implementation for the abstract
Chart2DMSStatus class. It implements get and set methods to access and modify values of
the status of a DMS. The status information stored here is relatively dynamic: things like
the current message on the sign, its beacon state, its current operational mode (online,
offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or
HARDWARE_FAILURE) and controlling operations center. (More static information
about the sign, such as its size and location, is stored in an analogous Configuration object.)

R1B2 GUI Detailed Design Rev. 0 3-14 11/20/00

3.4.1.1.5 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerance by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.4.1.1.6 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It
consists of two elements: a MULTI-formatted message and beacon state information
(whether the message requires that the beacons be on). The DMSMessage is contained
within a DMSStatus object, used to communicate the current message on a sign, and is
stored within a DMSRPIData object, used to specify the message that should be on a sign
when the response plan item is executed.

3.4.1.1.7 DMSMessagelmpl (Class)

The DMSMessagelmpl class provides an implementation for the abstract DMSMessage
class. It implements get and set methods to access and modify the MULTI-formatted
message and beacon state values which make up a DMS message.

34.1.1.8 DMSPIlanltemData (Class)

The DMSPIanltemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanltemData.

34.1.19 DMSPlanltemDatalmpl (Class)

The DMSPIanltemDatalmpl class provides an implementation for the abstract
DMSPIlanltemData class. It implements get and set methods to access and modify values
relative to a stored Plan Item for a DMS.

R1B2 GUI Detailed Design Rev. 0 3-15 11/20/00

3.4.1.1.10 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.4.1.1.11 DMSRPIDatalmpl (Class)

The DMSRPIDatalmpl class provides an implementation for the abstract DMSRPIData
class. It implements get and set methods to access and modify values relative to a Response
Plan Item for a DMS.

3.4.1.1.12 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
Chart2DMSConfiguration class to provide configuration information specific to an FP9500
model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a
specific brand and model of sign for manufacturer-specific configuration information.

3.4.1.1.13 FP9500Configurationimpl (Class)

The FP9500Configurationlmpl class provides an implementation for the abstract
FP9500Configuration class. It implements get and set methods to access and modify values
specific to the static configuration of an FP9500 DMS. It is exemplary of potentially a
whole suite of subclasses specific to a specific brand and model of sign for manufacturer-
specific configuration information.

3.4.1.1.14 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the Chart2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the FP9500 model would include things like the current message number and
current message source, status bits, light status, pixel failure map, and so on.

3.4.1.1.15 FP9500Statusimpl (Class)

The FP9500Statusimpl class provides an implementation for the abstract FP9500Status
class. It implements get and set methods to access and modify values specific to the
dynamic status configuration of an FP9500 DMS. It is exemplary of potentially a whole
suite of subclasses specific to a specific brand and model of sign for manufacturer-specific
status information.

R1B2 GUI Detailed Design Rev. 0 3-16 11/20/00

3.4.1.1.16 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

R1B2 GUI Detailed Design Rev. 0 3-17 11/20/00

3.5 GUI

3.5.1 Class Diagrams

3.5.1.1 R1B2GUIClassDiagram (Class Diagram)

This class diagram depicts the core classes and interfaces necessary to provide an extensible
GUI application framework for future CHART Il development. Included are details of
objects served from the GUI application, an installable module framework, a core data
model that provides the framework for window updates when objects change, and a
framework for system preference configuration.

UserLoginSession

UserLoginSessionl

CosEvent. java.awt.event.
PushConsumer ActionListener

mpl

m_accessToken

getOpCenter()

GUIToolBar

addButton()
disableButton()
disableAllButtons()
enableButton()

0.1
1, 1

getUsername()
ping()
forceLogout() 0.1 1
getAccessToken() GUI
setAccessToken()
getCORBAID() m_opCenter
1 1
DataModel startup())
getir
1 1 shutdown()
. login()
IdentifierGenerator logout()

EventConsumerGroup ! l

getLoginSession()
getORB()

getPOA()
getEventConsumerGroup()
getTrader()

getToken()

getDataModel()
discoverEventChannels|

discoverObjects()
Object[] selected, C

getGUIOperationsCenter() : GUIOperationsCenter

discoverEventChannelsOfName(name, PushConsumer)

invoker) :

CommandsStatusHandler

-changeUser()
getSystemProfile() : GUIProfile
getUserProfile() : GUIProfile

getCommandStatusHandler()

CommandStatusHandler(datamodel)
createCommandStatus(description)

getToolBar()

closeAudioSourceDataLine() : void

JMenu
handleCommand(actionEvent, Menuable[] selected)

openAudioSourceDataLine() : SourceDataLine
getAudioSourceDataLine() : SourceDataLine

or

or() : Ider
1
1

1

NavigatorSupporter

GUINavigatorDriver

11
FilterManager

DiscoveryThread

shutdownDiscoveryThread()

GUIProfile

getProfileProperty(key) : String
getAllProperties() : Properties
setProfileProperties (properties)
deleteProfileProperties (String[l)
cleanupResources()

InstallableModule

startup(orb)

discoverEventChannels(trader, eventConsumerGroup)
discoverObjects(trader, dataModel)

shutdown(grb)

getMenultemReps(access Token, Menuable[]) : MenultemRep][]
handleCommand(actionEvent, Menuable(]) : boolean

GUIOperationsCenter
. 1 1
OperationsCenter <>
getiD()
getName() : String
getC) : Shared| (]
getl) : Userl
ResponseParticipant IgelN:JrnLDggedansers():inI UserL
logint 1ame, : Userl
1
logoutUser()
string m_name
ResponsebartcipantType m_type | <] forcelogour(Usert oginSession)
: ipant]
addResponseParticipant(
removeR articipant(R articipant)
(Resp
p p (R pant)

javalang.Runnable

Or

1

Figure 11. R1B2GUIClassDiagram (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

11/20/00

3.5.1.1.1 CommandStatusHandler (Class)

This class provides functionality that allows the modules to deal with CommandStatus
objects for calling asynchronous methods without performing the housekeeping associated
with serving these objects. It provides a method for creating a CommandStatus object
which will create the object, attach it to the ORB, add it to the data model, and observe the
data model waiting for the CommandStatus object to complete. When it completes, this
object will disconnect it from the ORB and remove it from the data model.

3.5.1.1.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.5.1.1.3 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that
they do not lose their connection to the CORBA event service. The class will periodically
ask each consumer to verify its connection to the event channel on which it is dependent to
receive events.

3.5.1.14 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.5.1.1.5 DiscoveryThread (Class)

This thread is used by the GUI to check for new event channels and served CORBA
objects. It will periodically call the GUI to find event channels and objects.

35.1.1.6 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

R1B2 GUI Detailed Design Rev. 0 3-19 11/20/00

3.5.1.1.7 GUINavigatorDriver (Class)

This class handles all of the Navigator-specific functionality for the GUI.

3.5.1.1.8 GUIOperationsCenter (Class)

This class is a GUI “wrapper” object that is used to wrap an OperationsCenter object. The
wrapping is done to cache the data locally for faster access, and to provide GUI-specific
functionalities to the wrapped object.

3.5.1.1.9 GUIToolBar (Class)

This class will hold all of the top-level buttons and will be the launching point for invoking
the functionality of the CHART2 system. It will be created at startup, and each module may
add any toolbar buttons at that time. At Login, modules that have added toolbar buttons at
startup should enable any toolbar buttons that should be enabled (depending on access
rights). The buttons will be disabled by the GUI after they are added at startup and again at
logout.

3.5.1.1.10 FilterManager (Class)

This class provides functionality for managing the filters in the system. As it deals with the
singleton GUI and the DataModel objects, it too will be a singleton object. The GUI will
create and hold the FilterManager. Filter supporters can be added to the FilterManager to
support the creation of supporter-specific filter types.

3.5.1.1.11 GUIProfile (Class)

This class is a wrapper for the Profile CORBA interface. It provides GUI-specific
functionality for the profile. A GUIProfile can represent either a system profile or a user
profile.

3.5.1.1.12 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.5.1.1.13 java.awt.event. ActionL.istener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

R1B2 GUI Detailed Design Rev. 0 3-20 11/20/00

3.5.1.1.14 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.5.1.1.15 NavigatorSupporter (Class)

This interface must be implemented by any subsystem that supports invoking the
Navigator. It must be able to supply the Navigable objects, and also can support user
interaction with the selected Navigable objects through menus and drag/drop.

3.5.1.1.16 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.5.1.1.17 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.5.1.1.18 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART Il system behaves or presents information to a user.

3.5.1.1.19 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable
objects.

3.5.1.1.20 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

R1B2 GUI Detailed Design Rev. 0 3-21 11/20/00

3.5.1.1.21 UserLoginSessionImpl (Class)

This class is the implementation of the CORBA UserLoginSession interface. It will be
served from the GUI and will be passed to the OperationsCenter on login. It will also store
the access token returned from the OperationsCenter.

R1B2 GUI Detailed Design Rev. 0 3-22 11/20/00

3.5.1.2 MiscClasses (Class Diagram)

This diagram shows other classes that are used in the GUI, but are not part of the
fundamental framework of the GUI.

MenultemRep

MenultemRep(String, boolean enabled)
isEnabled() : boolean
setEnabled(boolean) : void
java.awt.event. getMenutemString() : String
ActionListener

MenuActionProxy Menuable
1 *
<>
MenuActionProxy(Menuable] selected) getMSMenultemReps(access Token, Component invoker) : MenultemRep(]
getSSMenuttemReps(accessToken, Component invoker) : MenultemRep(]
1

: 2

GuUI

1
DataModel]
1 1

Poller

startPolling(Pollable, millis, mainThread)
stopPolling(Pollable)
IT

GUIModelObserver

Pollable
1
Commandstatus CommandStatusHandler poll)
undate(String status):void CommandStatusHandler(datamodel)
completed(String final_status) createCommandStatus (description)
& 9
A removes
completed
) CommandStatusimpl {
javax.swing.
m_description CommandFailure
A m_creationTime
m_lastUpdateTime

m_lastStatusString
m_hasCompleted

javax.swing.table.

DefaultJFrame TableModel getiD()
update()
completed()
getDescription()
getCreationTime()
getlLastUpdateTime()
getLastStatusString()
hasCompleted() /
StatusFrame N N StatusViewTableModel StatusViewable
1 *
getStatusViewableDescription() : String

getStatusViewableStartTime() : Date
getStatus ViewableStatus () :String
getStatus ViewableLastUpdateTime() : Date
getStatusViewablelsFinal() : boolean

Figure 12. MiscClasses (Class Diagram)

3.5.1.21 CommandFailure (Class)

This object represents a failure of a command. It implements the StatusViewable interface
so that it can be displayed in the StatusFrame (i.e., the “Command Failures” window).

R1B2 GUI Detailed Design Rev. 0 3-23 11/20/00

3.5.1.2.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.5.1.2.3 CommandStatusimpl (Class)

This class is the implementation of the CommandStatus CORBA interface. It will be
created and passed to a server when a command is to be executed so that the GUI can stay
updated as the command is executing.

3.5.1.24 CommandStatusHandler (Class)

This class provides functionality that allows the modules to deal with CommandStatus
objects for calling asynchronous methods without performing the housekeeping associated
with serving these objects. It provides a method for creating a CommandStatus object
which will create the object, attach it to the ORB, add it to the data model, and observe the
data model waiting for the CommandStatus object to complete. When it completes, this
object will disconnect it from the ORB and remove it from the data model.

3.5.1.2.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects
which are notified when objects are added to or removed from the model. Objects may also
notify the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.5.1.2.6 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

35.1.27 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

R1B2 GUI Detailed Design Rev. 0 3-24 11/20/00

3.5.1.2.8 ModelObserver (Class)

This interface must be implemented by any object that may need to attach to the DataModel
as an observer and get updated as system objects are added, deleted or changed.

3.5.1.2.9 GUIModelObserver (Class)

Interface to be implemented by GUI components that may needd to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.5.1.2.10 java.awt.event. ActionL.istener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.5.1.2.11 javax.swing. JFrame (Class)

Java class that displays a frame window.

3.5.1.2.12 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu
items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.5.1.2.13 MenuActionProxy (Class)

This class catches the action performed by the menu item and stores the selected menuable
objects to act on.

3.5.1.2.14 MenultemRep (Class)

This class is used by the Menuable objects when they are called to return their menu items.
It contains a flag indicating whether the menu item is to be disabled.

R1B2 GUI Detailed Design Rev. 0 3-25 11/20/00

3.5.1.2.15 javax.swing.table. TableModel (Class)

This class provides the data structure that drives the population and updating of the data
used by the JTable (a Java GUI component).

3.5.1.2.16 StatusViewable (Class)

This interface provides the functionality needed to add objects to the
StatusViewTableModel so that they can be displayed in the StatusFrame.

3.5.1.2.17 StatusViewTableModel (Class)

This class provides the data framework needed to populate and update the JTable that
displays the StatusViewable objects in the StatusFrame.

3.5.1.2.18 Pollable (Class)

This interface provides a method so that the Poller can periodically call the object to poll it.

3.5.1.2.19 Poller (Class)

This class will periodically call the poll() method for any Pollables for which polling has
been started. This happens either on the polling thread or on the AWT event thread, as
specified when the polling is started.

3.5.1.2.20 StatusFrame (Class)

This class is a window that displays the StatusViewable objects in a JTable. Currently the
“Command Status” and “Command Failures” windows are StatusFrames.

R1B2 GUI Detailed Design Rev. 0 3-26 11/20/00

3.5.2 Sequence Diagrams

3.5.2.1 GUI:ChangeUserBasic (Sequence Diagram)

This diagram shows the steps that will be taken in the GUI when a user change occurs
without first logging out. The new user will be logged in and the previous user will be
logged out, then all windows are closed and the new user’s preferences are loaded to

replace the previous preferences. If the changeUser command fails, the previous user will
still be logged in and the new user will not be logged in.

UserLoginSessionimpl

A a]

GUI OperationsCenter | | InstallableModule GUIProfile ‘ ‘ Profile GUIUserManagementModule
Operator
[—CchangeUser
create
(new login session)
changeUser—————>
P [failure] ________
Display Error
——setAccess Token—>}
delete
(previous login session)
* for each module]
loggedOut
Close Windows
shutdown
—setUserPreferences—>;
destroy
* for each module] ><
loggedin

create,

getUserProfile

(new GUI user profile)

Figure 13. GUI:ChangeUserBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-27

11/20/00

3.5.2.2 GUIl:CommandObjectBasic (Sequence Diagram)

This diagram shows the basic steps involved in issuing a typical command to an object. The
context menu is built when the user right clicks on one or more selected objects. At this
time the GUI wrapper object will be added as an ActionListener and will receive the
command if any of its menu items are clicked on. (See the sequence diagrams
GUI:MakeMenuSingleSelect and GUI:MakeMenuMultipleSelect for more details). If a
long-running command is invoked, the object will create a CommandStatusimpl object, put
it in the DataModel, and pass it to the server so that the server can call back as the
command is completed. When the server calls the CommandStatusimpl’s completed()
method, the CommandStatusimpl will remove itself from the DataModel. If the command
fails, the Command Failures window will add the command status to its displayed list.

Served Comr\and
CORBA f Failure
Gul Menuable Object i ‘ RB ‘ DataModel CommandsStatusView View
Operator Object
Service
I i
(select objects) See the sequence diagrams:
~— GUL:MakeMenuSingleSelect
.| GUE:MakeMenuMultipleSelect
[context menu T GUI:MakeMenuNoneSelected
invoked} ;
makeMenu I
The Menuable object was
added as an action
listener when the
menu was made.
a menu .
item was clicked] \
actionPerformed
| update() will be
creat CommandStatusimpl "] called some time
later than the
DataModel
connect (C | is called.
getDataMode——— | p
i ;
jetToken update———>
9 LCall The Asynchronous Command—>4 e
irrr-command queued or error- The command
/ failure view
S command queued or error-—----~- wil ignore all
H e updates except
i —update—>} ones that show
T 4 command failures.
See GULEventUpdatePushedBasic L hiectUpdated S / - -
fora d;‘escnpuon of how éhe_" Jectp /
asynchronous command wil updvateﬁﬁu Ate————————>
update data il be processed | completec—>
X

Figure 14. GUl:.CommandObjectBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-28 11/20/00

3.56.2.3 GUI:DiscoveryBasic (Sequence Diagram)

This diagram shows the ongoing discovery of event channels and served CORBA objects.
In the GUI’s startup, it will start the DiscoveryThread, which will periodically search for
new event channels and objects until the GUI shuts down. The event channels are
discovered before the objects to prevent the dropping of events just after the objects are
discovered. First, the GUI looks for resource watchdog event channels, which will inform
the user if resources are controlled by an Operations Center which does not have any
logged in users, then it asks the modules to look for the module-specific event channels. If
any event channels are found, they are added to the EventConsumerGroup, which will
maintain the connection to the event channel if the event service goes down and is restarted.
The GUI will then ask each module to discover the objects that it is interested in. Each
module will look up the object factory in the trader, and ask the object factory for all of its
objects. Then, the module will check whether the CORBA object already has a GUI
wrapper object stored in the DataModel. If it doesn’t, it will create a new wrapper object
and add it to the DataModel. Any ModelObservers that are attached to the DataModel will
be subsequently informed of the new wrapper objects.

£

Module-specific Event served
InstallableModule CosTrading. CORBA object CosEvent. Consumer PortableServer. R
implementing class Lookup factory PushConsumer “Growp POA bi DataModel

CORBA
DiscoveryThread ‘ Gul ‘ object
Gul
[—start—=>
/-discoverEventChannels—1
query (resource watchdog event channels)
/ § Push
) | Event
[for each resource watchdog event channel] Consumer
The discovery thread create
i ?Jﬂﬁﬁs‘lgg?ﬁﬁ‘ﬁaop I*for each watchdog event channel
a
The timing of the loop may .
configurable through p—_lforeachmoduel o fic PushC \ alrcady created
the Systom preferénces I P ushConsumer no already oreated]__
[PushConsumer created] create i
< getPOA |
[PushConsumer create
< discoverEventChannelsOfName-| tivate_object
query (event channels of the specified name)
[for each event
channel returned
from query] ad

The factories are

retrieved (rather than

each object) to reduce

F——discoverObjects [* for each module] | network timeous fthe
discoverObijects e objects are in the
’ Hauery (morde spetic - irader but e server
0 is down.
[* for each object factory]
Get Object
getObject
Test whether a GUI wrapper I Ul
object already exists in the e fwrapper not found in DataModei] gul
data model to avoid e [+ for each object PPeT I oreate ; CORBA abject
unnecessary initialization returned from factory i wrapper
calls across the network et it
< et Initialization___
Data

Figure 15. GUI:DiscoveryBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-29 11/20/00

3.5.2.4 GUIl:EventUpdatePushedBasic (Sequence Diagram)

This diagram shows how updates to the served CORBA objects propagate to the GUI
windows. The server will push the event data to the event service. The CORBA event
service will then push the event data to the PushConsumer (which would typically be the
GUI or an InstallableModule). The event data must contain some identification data so that
the GUI wrapper object can be looked up in the DataModel. After the PushConsumer
retrieves the GUI wrapper object from the DataModel, it will update any relevant data
within the object and will call the DataModel one or more times with update hints to
indicate what part of the object’s data changed. The DataModel will accumulate all of the
update hints for some short time period until it distributes them to all of the attached
ModelObservers (which would typically be windows displaying the object data).

(o]
-

% Gul
CosEvent.PushConsumer CORBA object ModelObserver
CEORBA implementing class wrapper DataModel implementing class
vent

Service

71 This represents L
any view(s)
[—push (update data)—>} displaying the

-getDataModel———>1 object's data.

They must have
getObject attached to the
DataModel to receive
Update the updates.

The update

data must contain

some sort of identification
tag so that the object —objectUpdated—=>
can be looked up.

Objectt

< update———>

later on the appropriate data model

*{ The update will happen sometime
update thread.

Figure 16. GUI:EventUpdatePushedBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-30 11/20/00

3.5.2.5 GUI:LoginBasic (Sequence Diagram)

This diagram shows what steps must be taken at login. The GUI creates a
UserLoginSessionImpl and passes it to the OperationsCenter for login. The GUI will then
store the AccessToken in the UserLoginSessionimpl for later use. The GUI then enables the
basic buttons on the GUI toolbar. Then it creates the GUIProfile wrappers for the system
and user Profiles, and it initializes the system and user Navigator filters. Then the GUI calls
each InstallableModule to allow them to handle post-login processing.

o

A

Operator

(]
<

OperationsCenter

login————>

——create—> UserlLoginSessionimpl

loginUser

[failure]
display error

[failure]
delete

—setAccessToken—>

—
"Enable The Basic
GUI Buttons Except

Login"

InstallableModule

UserManager EilterManager

getSystemProfile

create

GUIProfile (System)

getUserPFofiiu

create

initializeSystemFilter

GUIProfile (User)

initializeUserFilters

i [*foreach module]

loggedin

Figure 17. GUl:LoginBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-31

11/20/00

3.5.2.6 GUI:LogoutBasic (Sequence Diagram)

This diagram shows what processing happens when the user logs out. The GUI calls the
GUIOperationsCenter, which in turn calls the OperationsCenter object. If any shared
resources are still assigned to the Op Center and the user logging out is the last user at the
Op Center, the logout will fail and the user will need to transfer the shared resources to
another Op Center. In this case a dialog will be displayed. If the logout is successful, the
GUI will call each installable module’s loggedOut() method. Then it will close all windows
and disable the toolbar buttons, deactivate the UserLoginSessionimpl, and clean up the
system and user Navigator filters and GUIProfile objects.

PortableServer. UserLogin
GUI ‘ GUIOperationsCenter OperationsCenter | InstallableModule POA Sessionimpl FilterManager ‘ GUIProfile
Operator
| [clicks on Logout button] S
actionPerformed
onLogout
[user logged in]
logoutUser logoutUser
[last user to log out and op ctr
<---is controlling resources] -1
HasControlledResources
. 1
[controlled resources]
"Display Transfer
Resources Dialog"
S [resources error] __________
k......[has controlled HasControlledResources
resources] S Tlogout failure]
LogoutFailure
[LogoutFailure]
GUIException
[other error aside from
HasControlledResources]
"Display Error To User"
e T
D [error}-smmeeet
[successful logout]
loggedOut
[* for eachii module]
loggedOut
"Close All Windows
Except Toobar And
Save Window Positions"
"Disable All Toolbar
Buttons Except Login And Exit"
-
getCORBAID
ivate_object (UserLoginSe: i‘;u Impl)
wc:dl wpUserFilter
lear temFil
cleanupResources (User Profile)
;.vcal pl ‘Syslem Profile)
-—"Return From loggedOut"-—> ><
<-—"Return From logoutUser"-—- | ><

Figure 18. GUI:LogoutBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-32 11/20/00

3.5.2.7 GUI:MakeMenuMultipleSelect (Sequence Diagram)

This diagram shows how a menu is created when two or more GUI wrapper objects are
selected. The GUI’s makeMenu method determines that there are multiple objects selected,
and it creates a BucketSet that it will use to count the menu items. Then it asks each
selected object to supply the multiple-selection menu item reps. If the user does not have
sufficient rights, those menu items will be grayed out. The menu item strings are put into
the BucketSet and then retrieved. The only reps that are retrieved from the BucketSet are
those which have the same number of instances as there are selected objects. The GUI then
creates menu items for the reps and attaches a new MenuActionProxy as an ActionListener
to each representative menu item.

X

Operator

2

<|
9
<

Menuable ‘

InstallableModule

[operator invokes
| context menu with,
multiple objects selected]
Invoke Menu

y
S — objects are not Menuable}

[any of

.
Display Menu

———mal
the selected

return

keMenu————>

[* for each
rep returned
from the
bucket set]
repeat

Menu or

<
[* for each selected

JMenu

——Menuable object—=}
" - MenultemRep
getMer P
eate
ate BucketSet
[* for each item rep] L
add
reat MenuActionProxy
‘ L
[any matching menﬂ reps
are disabledH
setEnabled(false)
eate javax.swing.JMenultem ><
ava,awl%ienullem
isEnabled
etEnabled
-addActionListener(proxy)
-add
[user clicked on menu item]
actionPerformed
andleC
[* for each module]
handleCommand
[not handled
fby a rr;]odulle] ed
[* selec
i_[*for egt():jem] s
actionPerformed
Figure 19. GUl:MakeMenuMultipleSelect (Sequence Diagram)
3-33 11/20/00

R1B2 GUI Detailed Design Rev. 0

3.5.2.8 GUI:MakeMenuNoneSelected (Sequence Diagram)

This diagram shows how a menu is created when no GUI wrapper objects are selected. The
GUI’s makeMenu method determines that there are no objects selected, and the GUI then
adds its own global menu items and calls each module to get their menu item reps. The GUI
then creates a MenuActionProxy and attaches it as an ActionListener to the menu items so
that it will be called when the user clicks on the menu items. If the user does not have rights
to perform the action associated with a menu item, it will be grayed out.

e}
: % GUI InstallableModule
Operator View

[operator invokes
context menu,

with no objects selected] L
Invoke Menu makeMenur > JMenu or

Menu
Ccreate
javax.swing.JMenultem
or
[* for each system menu item] java.awt.Menultem
create
The access token
is used to restrict
the user's actions, MenuActionP
if applicable, depending .. create: MenuActionProxy
on the users' rights. If I L
the user does not have T
rights, the menu items *‘[g;‘o&gﬁﬁre”m]g:“)esg
will be grayed out. [*for each menu item] MenultemRep
create
create:
[foreach isEnabled
menu iletm] etEnabled
repeat y
R addActionListener(proxy)
add
| Display Menu
[user clicks on a menu item]
actionPerformed
handleCommand
i [*for each module]
handleCommand

Figure 20. GUI:MakeMenuNoneSelected (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-34 11/20/00

3.5.2.9 GUI:MakeMenuSingleSelect (Sequence Diagram)

This diagram shows how a menu is created when exactly one GUI wrapper object is
selected. The GUI’s makeMenu method determines that there is one object selected, and it
asks the Menuable object for the single-select menu item strings. The GUI will then create
all of the menu items and attach a new MenuActionProxy as the ActionListener to each of
the menu items.

;O:
Any GuUI Menuable InstallableModule
GUI
View
[operator invokes
|__context menu with
one object selected]
makeMenu Menu
reate or
JMenu
create MenuActionProxy
i_[implements Menuable]__ " .
getSSMenultemReps Lt [rforea g'ge’;[gnu item] MenuttemRep
[* for each module] I f .
for each menu item]
getMenultemReps Create
javax.swing.JMenultem
or
create java.awt.Menultem
[* for each isEnabled
menu item
repeat ! setEnabled(false)
addActionListener(proxy;
add
Display Menu ><
[user clicked on menu item],
actionPerformed
handleComman
handleCommand—————>|
i _[not handled by a module] ;§
actionPerformed :

N X X
Figure 21. GUIl:MakeMenuSingleSelect (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-35 11/20/00

3.5.2.10 GUI:ShutdownBasic (Sequence Diagram)

This diagram shows steps necessary for a shutdown. The operator either closes the
GUIToolBar or clicks on the Exit button. Either of these actions will result in the GUI’s
shutdown method being called. If the user is logged in, he or she will be logged out. If this
happens, the GUI calls the GUIOperationsCenter, which in turn calls the OperationsCenter
object. If any shared resources are still assigned to the Op Center and the user logging out is
the last user at the Op Center, the logout will fail and the user will need to transfer the
shared resources to another Op Center. In this case a dialog will be displayed. If the logout
is successful, the GUI will call each installable module’s loggedOut() method. Then it will
close all windows and disable the toolbar buttons, deactivate the UserLoginSessionimpl,
and clean up the system and user Navigator filters and GUIProfile objects. Once the user is
logged out, the GUI shuts down the discovery thread and informs all of the modules that the
GUI is being shut down. Finally, the GUI process exits.

Either of these
actions will
initiate shutdown,
i PortableServer. UserLogin
GUIToolBar cul GUIOperationsCenter OperationsCenter | InstallableModule POA DiscoveryThread GUIProfile
Operator |
i [clicks on Exit]
i actionPerformed
{closes window]
closeWindow
ot [user logged in]
logoutUser logoutUser
[last user to log out and op ctr
<—-is controlling resources}-—
HasControlledResources
_—
[controlled resources]
"Display Transfer
Resources Dialog"
[has controlled *"'"nwgesf“if%}e”"“ """"""
,,,,,,,,,,,,, iasControlledResources
L _has controlled____ = resources] | llogoutfaiurel _____
resources) LogoutFailure
[— [LogoutFailure]
GUIException
[other error]
“Display Dialog To
Allow User To Exit"
[other error
[other error <——"and[user chooses
[<—and user chooses— to not exit]
to not exit]

< [successful logout]
loggedOut

[* for each installable module]
loggedOut

—
“Close All Windows
Except Toobar And

Save Window Positions"

"Disable All Toolbar
Buttons Except Login And Exit"
i outtons Bxeept

getCORBAID

tivate_object (UserL

(User Profile)

(System Profile)

DiscoveryThread—

[* for each module]
shutdown

“Save The ToolBar
Window Position”

“Exit GUI Process™

X X X X X X X X X
Figure 22. GUIl:ShutdownBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-36 11/20/00

3.5.2.11 GUI:StartupBasic (Sequence Diagram)

When the GUI application is started, it first performs CORBA initialization: it initializes the
CORBA ORB and creates the root POA and the persistent POA, and activates the POA
Manager. Then it creates a GUIStartupCommand object, which is passed off to Java to
execute at a later time on Java’s AWT event thread. The ORB’s run() method is called,
which blocks the application’s main thread. Java then invokes the GUIStartupCommand,
which creates and initializes the GUI. During startup(), the GUI is activated in the POA so
that it can receive CORBA events for the ResourceManagement events. It also loads the
names of the InstallableModules to install from the system properties file, and proceeds to
instantiate all of the installable modules based on the class name of each module. The GUI
then looks for the CORBA Trading Service, and queries the OperationsCenter object with
the name specified in the system properties file. It also queries the UserManager object
from the Trading Service. If all of this is successful, the GUI’s toolbar is created and the
buttons are added. Each module’s startup() method is called, at which time the modules can
add toolbar buttons of their own. Then the DiscoveryThread is started, which will
periodically look for new event channels and objects in the Trading Service.

rrorl
“Tog Ertor and Ext GUI Process”

getEligble
Partcipants

—————

[+ for each
star

yyyyyy

——

Figure 23. GUI:StartupBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-37 11/20/00

3.5.2.12 GUI:SystemCommandBasic (Sequence Diagram)

This diagram shows how a system command is handled. A system command is one which
does not apply to any served CORBA objects. (For those commands, see the
GUI:CommandObjectBasic diagram). First, a context menu is invoked by the user when
there are no objects selected (see the GUI:MakeMenuNoneSelected for details on how the
menu is made). The GUI, or an InstallableModule, will be attached to the menu items as an
ActionListener when the menu is built. When the user clicks on the menu item, Java will
invoke the actionPerformed() method of the ActionListener implementing class, which will
allow the ActionListener to execute the command.

This may be either
the GUIl or an
InstallableModule

% GUI java.lang.ActionListener

Operator
See the sequence diagram:
[context menu .1 GUI:MakeMenuNoneSelected
invoked with i~
——no objects—=>
selected]
makeMenu

_| The listener
| was aftached
- when the menu

[a menu item

4 was made.
was clicked on]
actionPerformed
Perform
Action

Figure 24. GUI:SystemCommandBasic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-38 11/20/00

3.6 GUIDMSModule

3.6.1 Class Diagrams

3.6.1.1 DMSDialogs (Class Diagram)

This diagram shows all of the classes representing GUI windows that exist within the

GUIDMSModule.

java.awt.event.
ActionListener

I

java.awt.event.
KeyListener

TR

1

JComponent

N

I

DMSStoredMsgltemPropertiesDialog

‘ DMSMessageEditor

‘ FP9500PropertiesDialog

DefaultDMSPropertiesDialog

DefaultJFrame

PixelStatusControl GeneralPropertiesControl DisplayPropertiesControl FieldCommsPropertiesControl HardwareStatusControl
Figure 25. DMSDialogs (Class Diagram)
3-39 11/20/00

R1B2 GUI Detailed Design Rev. 0

3.6.1.1.1 DefaultDMSPropertiesDialog (Class)

This dialog is used to view and edit the DMS properties of those models that support a
standard set of DMS operational parameters and status information. It uses the control
classes derived from JComponent for formatting, display and user editing features.

3.6.1.1.2 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.6.1.1.3 DMSMessageEditor (Class)

This class is responsible for allowing an operator to set the current message on a DMS. It
also updates a MessageView to allow the operator to preview the message, as it will look
on the selected sign, prior to sending the message to the sign controller.

3.6.1.1.4 DMSStoredMsgltemPropertiesDialog (Class)

This dialog is used for creation, viewing and editing of the properties of
DMSStoredMsgltem and GUIDMSStoredMsgltem objects.

3.6.1.1.5 FP9500PropertiesDialog (Class)

This dialog is used to view and edit the FP9500 DMS configuration information. It also
allows the FP9500 DMS extended status information to be viewed. It delegates the
formatting, display and user editing functions to the classes derived from JComponent like
GeneralPropertiesControl, PixelStatusControl and other control classes. The control classes
used by this class depend on the configuration and status information supported by the
FP9500 DMS model.

3.6.1.1.6 DisplayPropertiesControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS display
Properties and allows the user to edit these properties. Some examples of DMS display
properties are sign height, sign width, character height and character width.

3.6.1.1.7 FieldCommsPropertiesControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS field
communication properties and allows the user to edit these properties. Some examples of
DMS field communication properties are DMS phone number and comm loss time.

R1B2 GUI Detailed Design Rev. 0 3-40 11/20/00

3.6.1.1.8 GeneralPropertiesControl (Class)

This class is derived from JComponent and is capable of graphical display of general DMS
Properties and allows the user to edit these properties. Some examples of general DMS
properties are DMS name, DMS type and DMS location.

3.6.1.1.9 HardwareStatusControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS
controller status. It does not allow the user to edit the information displayed.

3.6.1.1.10 java.awt.event. ActionL.istener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.6.1.1.11 java.awt.event. KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.6.1.1.12 PixelStatusControl (Class)

This class is derived from JComponent and is capable of graphical display of DMS Pixel
status. It does not allow the user to edit the information displayed.

3.6.1.1.13 JComponent (Class)

This is a Java Swing base class that may be derived by any class having a graphical
representation that can be displayed on the screen and that can interact with the user.

R1B2 GUI Detailed Design Rev. 0 3-41 11/20/00

3.6.1.2 DMSModuleArchitecture (Class Diagram)

This diagram shows the data hierarchy of the GUIDMSModule and the objects that it
supports. The GUIDMSModule:NavigatorSupport class diagram shows how these objects
are laid out on the GUI navigator.

GUITrafficEventHolder

GUIMessageLibrary

GUIStoredMessage
StoredMessage

GUIPlan
Q

GUIResponsePlanitem
/\

GUIPlanltem
ResponsePlanitem

1 1
ResponseDataCreator
1, 1 i
P - cuib GUIDMSStoredMessage
I otifier |
remove GUIDMSStor o
e

p setAssociatedHAR (har) execute rgemc\(/)e()
1 1 < . getAssociatedHAR() : GUIHAR N » * | doProperties()
Chart2DMS - isHARNoticeActive() : boolean sage()

GUIDMS . getNotifier() : HARMessageNotifier getMessageContent

ZT .

GUIFP9500 GUIDefaultDMS

DMSNavGroup | 1

1
InstallableModule
N 1,
* 1
startup(orb) cul
discoverE , eventCor oup)
ld\sct:éero)bjec's(trader, dataModel)
loggedin("
loggedout() PlanltemCreationSupporter
shutdown(ort
getMenultemReps(accessToken, Menuable[]) : MenultemRep][]
handleCommand(actionEvent, Menuable(]) : boolean .
getPlanit Token) : Menul p[]
createGUIPlanitem(planitem, itemID, plan) : GUIPlanitem
createNewGUIPlanitem (accessToken, menuString, plan) : boolean

DMSFactory
1

* GUIDMSModule

GUILibrarySupporter

createGL Message) : GU

Token) : Ment P[]
createNewGUIStoredMessage(access Token, menuString, guiLibrary) : boolean
createLibraryType():LibraryType

CosEvent.
PushConsumer q

get()

addDMS()
getDictionary()

-] getLibraryNavGroup()
getDMSNavGroup()
push getFonts
getGeometries()

-

* GUIDMSModelSupporter

createGUIDMSModel(dms, dmsID):GUIDMS
JID| ment

bool
A\ getDMSC p: 1):Mer pll
GUIResponsePlanitemCreator <] v
createGUIResponsePlanitem(Identifier, name, £ =
D temData) : GUIResp fanitem GUIDefaultDMSModelSupporter GUIFP9500ModelSupporter
createGUIResponseP P)
GUIResponsePlanitem

Figure 26. DMSModuleArchitecture (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-42 11/20/00

3.6.1.2.1 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to
be used in manipulating the Chart Il-specific DMS objects within Chart Il. It provides a
method for getting the DMSArbitrationQueue for a Chart Il DMS, which can then be used
by traffic events to provide input as to what each traffic event desires to be on the sign. It
also provides a method to perform testing on a sign. This method can be extended by
derived classes for specific models of signs, which know how to perform certain types of
testing on their specific model of sign. Chart Il business rules include concepts such as
shared resources, arbitration queues, and linking devices usage to traffic events, concepts
which go beyond what would be industry-standard DMS control.

3.6.1.2.2 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.6.1.2.3 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
Chart 11 system. It also provides a method to get a list of DMS devices currently in the
system.

3.6.1.24 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.6.1.25 GUIDMSModule (Class)

The GUIDMSModule is an installable module in the GUI that handles all of the DMS
specific functionality. Only one GUIDMSModule object may exist within the GUI. This
class implements the interfaces to support the frameworks of the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule. It handles the creation of model
specific GUI DMS objects using the model supporters.

3.6.1.2.6 GUIHARMessageNotifier (Class)

This interface is similar to the HARMessageNotifier interface in that it is implemented by
all of the message notifier classes, but this interface is specific to the GUIHARModule and
its usage of the GUI wrapper objects.

R1B2 GUI Detailed Design Rev. 0 3-43 11/20/00

3.6.1.2.7 GUIDMS (Class)

This class is a GUI “wrapper” object that is used to wrap a CHART2DMS object. This is a
abstract class that needs to be extended by the GUI DMS model specific classes.

3.6.1.2.8 GUILibrarySupporter (Class)

This class allows the GUILibraryModule to maintain stored messages that have differing
formats. When an object of this type is installed the user can create, maintain, and use the
specific type of libraries and stored messages that the object supports.

3.6.1.2.9 ResponseDataCreator (Class)

This interface enables the creation of type-specific ResponsePlanltemData objects, which
are used for creating the appropriate type of ResponsePlanltem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

3.6.1.2.10 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.6.1.2.11 DMSNavGroup (Class)

This class serves as a container for all of the GUIDMS objects in the GUIDMSModule,
when they are displayed in the Navigator. The GUIDMSModule has one instance of this
class.

3.6.1.2.12 GUIDMSResponsePlanltem (Class)

This class is a GUI “wrapper” object that is used to wrap a ResponsePlanltem object which
contains a DMSRPIData object.

3.6.1.2.13 GUIDMSStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object of
DMSMessage type. It helps in the creation of a DMS stored message using a
DMSMessageEditor.

R1B2 GUI Detailed Design Rev. 0 3-44 11/20/00

3.6.1.2.14 GUIPIanltem (Class)

This is a GUI base class for all the plan items. Each GIUPlanltem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

3.6.1.2.15 GUIResponsePlanltem (Class)

This is a base class for the GUI wrapper object that is used to wrap a ResponsePlanltem.
The ResponsePlanltem represents a proposed action to perform on a target object in
response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the
response plan item.

3.6.1.2.16 GUIPIan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data
locally for faster access, as well as to give the Plan some GUI-specific functionality such as
menus and command handling.

3.6.1.2.17 GUIStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object. It
provides a user interface object which can implement whatever interfaces are necessary for
the object to exist within the GUI framework (for example, an object must support the
NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.6.1.2.18 GUITrafficEventHolder (Class)

This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.6.1.2.19 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.6.1.2.20 GUIDefaultDMS (Class)

This class is derived from the GUIDMS class and represents a standard model DMS. This
class can handle the configuration requirements and status information that are standard
across all DMS types.

R1B2 GUI Detailed Design Rev. 0 3-45 11/20/00

3.6.1.2.21 GUIDMSModelSupporter (Class)

This interface must be implemented by any class that intends to provide functionality for
the creation of DMS objects of a specific model type. The GUIDMSModelSupporter
provides methods to return the specific menu string, which when selected on the GUI by the
user, results in the creation of the DMS object of that type. There are methods in the
interface that help in the creation of the model specific DMS object.

3.6.1.2.22 GUIDMSStoredMsgltem (Class)

This class is a GUI “wrapper” object that is used to wrap a Planltem object which contains
the DMSPlanltemData. It helps in the creation of a DMS plan item data using the
DMSStoredMsgltemProperties object.

3.6.1.2.23 GUIFP9500 (Class)

This class is derived from the GUIDMS class and represents a FP9500 model type DMS.
This class can handle the specialized configuration requirements of a FP9500 model DMS
and interpret the model specific status information.

3.6.1.2.24 GUIResponsePlanltemCreator (Class)

This interface is used to enable the creation of specific types of GUIResponsePlanltem
wrapper objects depending upon which type of ResponsePlanitem is being wrapped. Any
class wishing to create GUIResponsePlanltems must implement this interface and add
themselves to the GUITrafficEventModule at GUI startup time. When the
GUITrafficEventModule discovers a ResponsePlanltem or catches a CORBA event
indicating that a new response plan item has been created, it will call each known
GUIResponsePlanltemCreator to give it an opportunity to create a specific type of GUI
wrapper object.

3.6.1.2.25 PlanltemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module.
The modules must attach their PlanltemCreationSupporters at startup. The GUIPlanModule
will then call the supporter when it is time to display the Plan menu or to create a specific
type of plan item or GUIPlanltem.

3.6.1.2.26 GUIDefaultDMSModelSupporter (Class)

This class provides functionality for the creation of a standard DMS model object, by
implementing the GUIDMSModelSupporter interface.

3.6.1.2.27 GUIFP9500ModelSupporter (Class)

This class provides functionality for the creation of FP9500 type DMS object, by
implementing the GUIDMSModelSupporter interface.

R1B2 GUI Detailed Design Rev. 0 3-46 11/20/00

3.6.1.2.28 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.6.1.2.29 GUIMessageL.ibrary (Class)

This class is a GUI “wrapper” object that is used to wrap a MessageL.ibrary object. The
wrapping is done to cache the data locally for faster access, as well as to give the
MessageL.ibrary some GUI-specific functionality such as menus and command handling.

3.6.1.2.30 ResponsePlanltem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanltem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

R1B2 GUI Detailed Design Rev. 0 3-47 11/20/00

3.6.1.3 DMSNavigatorSupport (Class Diagram)

This diagram shows the user interface relationships of the objects supported by the
GUIDMSModule.

Navigable

getimage()
getDesc()
allowSetDesc()
setDesc()

NavTreeDisplayable NavListDisplayable

getNavParent() : NavTreeDisplayable
containsChildNavigable(Navigable) : boolean
getChildNavigables() : Navigable[]
getNavPropertyList() : String []

AR

getPropertyValue(property) : String
comparePropertyValues(property, vall, val2) : int

ND Lok

Droppable

/ 1 . / i Y i 4 \
DMSNavGroup FH GUIDMS GUIDMSResponsePlanitem || GUIDMSStoredMsgltem ‘ ’ GUIDMSStoredMessage

Menuable

getMSMenultemReps(accessToken, Component invoker) : MenultemRep][]
getSSMenultemReps(accessToken, Component invoker) : MenultemRep[]

java.awt.event.ActionListener

Figure 27. DMSNavigatorSupport (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-48 11/20/00

3.6.1.3.1 DMSNavGroup (Class)

This class serves as a container for all of the GUIDMS objects in the GUIDMSModule,
when they are displayed in the Navigator. The GUIDMSModule has one instance of this
class.

3.6.1.3.2 GUIDMS (Class)

This class is a GUI “wrapper” object that is used to wrap a CHART2DMS object. This is a
abstract class that needs to be extended by the GUI DMS model specific classes.

3.6.1.3.3 GUIDMSResponsePlanltem (Class)

This class is a GUI “wrapper” object that is used to wrap a ResponsePlanltem object which
contains a DMSRPIData object.

3.6.1.3.4 GUIDMSStoredMsgltem (Class)

This class is a GUI “wrapper” object that is used to wrap a Planltem object which contains
the DMSPlanltemData. It helps in the creation of a DMS plan item data using the
DMSStoredMsgltemProperties object.

3.6.1.3.5 GUIDMSStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object of
DMSMessage type. It helps in the creation of a DMS stored message using a
DMSMessageEditor.

3.6.1.3.6 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.6.1.3.7 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

R1B2 GUI Detailed Design Rev. 0 3-49 11/20/00

3.6.1.3.8 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu
items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to

check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.6.1.3.9 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.6.1.3.10 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.6.1.3.11 Navigable (Class)
This interface will be implemented by any class that supports the Navigator on either the

left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

R1B2 GUI Detailed Design Rev. 0 3-50 11/20/00

3.6.2 Sequence Diagrams
3.6.2.1 GUIDMSModule:AddDMS (Sequence Diagram)

This sequence shows how an operator adds a new DMS to the system. The processing
shown here is for adding a DMS of the default type. The processing involved in adding a
model specific DMS is much the same, except that the GUI DMS and the Properties Dialog
objects are the model specific derivatives. When the user right clicks on the GUIDMS
object, the model supporters registered in the system are called on to return the menu item
string that is to be displayed to the user in order to create the DMS model that it supports.
The operator selects the DMS model that he/she wishes to create. If the user does not have
the appropriate functional rights, the corresponding menu items are disabled. All the DMS
model supporters are then called upon to create a GUIDMS object. Only one of the
supporters will identify the menu item that was selected (in this case the default supporter),
and proceeds to create the appropriate DMS model. The operator will be shown a DMS
properties dialog box with default configuration information which he/she may modify to
alter the configuration of the DMS. When the operator presses OK, the new DMS will be
added to the system. The DMS will be added to the DMS factory that the user selected in
the properties dialog. If the user did not make a selection, each of the factories in the
CORBA trader is called one by one (starting with the factory closest to the GUI’s trader) to
create the DMS, and the first factory that successfully creates it, will be the home of the
DMS. Once the DMS is added successfully, a DMSAdded event will be pushed from the
server through the DMS event channel and the new GUIDMS object will be added to the
DataModel, which will update all windows after a short delay.

R1B2 GUI Detailed Design Rev. 0 3-51 11/20/00

Administrator

Amenu is displayed
wherefrom the user

can choose to create
any of the DMS model
supported by the system
If the user does not have
the appropriate rights,
the corresponding menu
items are disabled

ADI

operation.

object will be added to the GUI's

X

X

Figure 28. GUIDMSModule:AddDMS (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-52

D GUD GuDl
GUl DMSFactor Ci andler CorbaUtilities
[user right clicks on
dms}
getSSMenultemReps
—getModelSupporters—4
The GUIDMS wrapper object
['for each model supporter]. created would be a DMS model
9 P specific one, that gets the model
specific configuration information
from the user and requests the
DMS factory to create this new
L e o DMS object. The model specific DMS
vt PropertiesDialog is used to obtain the
[*for each model supporter] user input. Refer to the class diagrams
createNewGUIDMSMode! DMSDialogs and DMSModuleArchitecture
for details.
Each of the supporter is
called to create a GUIDMS i~create
object. This process stops
when a supporter successfully
creates a GUIDMS object or perti .
none of the supporters could create>] DefaultDMSPropertiesDialo:
create the GUIDMS object.
— ObjectsOfType (D! Y
———show——>
(OK orCANCELY
[cancel]
closeWindow
|
peration cancelled
i<—setConfiguration—;
Properties AN get
dialog s displayed and
itallows the user to getToken
edit the model specfic
configuration parameters. ——getC andler
The user can press the
OK button to add the DMS or r
CANCEL to cancel the
CommandStatus [7¢2
The DMS Properties dialog
allows the user to select the luser selected facto
factory to which the DMS is !
to be added. If the user does not i .
make a selection, each of the i[no rights]
factory in trader will be called on AccessDenied
to add the DMS, and the first _[any other error]
one that successfully adds it, CHART2Exception
will be the one that houses
the DMS. [user did not select 'aclcly'\
findAllObjectsOf Typt
[user did not select factory] T
[*for eaf:h dms !actory in o rights]
until reale succeeds AccessDenied
_[any other error].
P CHART2Exception
The creation of a DMS is not
instantaneous. The DMS factory
Break Loop needs to add the DMS to the FMS
j which in turn may contact the device
to set certain configuration information
[error]. on the device. The progress of the
GUIException DMS addition is tracked in the GUI using
the command status object, which is
periodically updated by the factory with
the current status. Once the DMS is created
a DMSAdded event is pushed
error 1
ucce:
This temporary GUIDMS object is
de\eted ater creation proces. When closeWindow
ided eventis received }
e sorver (or when the DMS is i |
discovered during the next | i
discovery cycle), the actual GUIDMS |

11/20/00

3.6.2.2 GUIDMSModule:AddDMSStoredMessageltem (Sequence Diagram)

This diagram shows how a Planltem is added to the system. The user clicks on the GUIPIan
object in the Navigator and chooses “Create DMS Plan Item”. The GUIPIan then calls all
the PlanltemCreationSupporters (the GUIDMSModule is one) to create the GUIPlanltem.
The processing stops with the first supporter that returns the new object after successful
creation. The menu selection being a DMS plan item, the GUIDMSModule recognizes the
menu item string. The module creates a temporary GUI wrapper for a plan item and calls it
to display its properties, which invokes the DMSStoredMsgltemPropertiesDialog. When
the user clicks Apply or OK, the dialog calls back to the GUIDMSStoredMsgltem wrapper
object to set the item data. Since the wrapper contains no served Planltem, it calls the
CHART2DMS to create one. If successful, the server will push a PlanltemAdded event to
all GUIs, which the GUI will catch to create a new GUIDMSStoredMsgltem wrapper
object (the temporary wrapper will be deleted).

R1B2 GUI Detailed Design Rev. 0 3-53 11/20/00

GUIPlan
Operator This dialog will allow
the user to select

‘ GuI ‘ ‘ DataModel ‘ ‘ Plan ‘
aDMS and a Stored Message
to associate with it.
['Create DMS Plan ltem"
[——menu item clicked|—>
i actionPerformed GU
This menu item *creale% GUIDMSStoredMsgltem
will be disabled if
the user does not
have sufficient rights. ——doProperties
—create DMSStoredMsgltemProperties
At this point all the DMS's
in the system along with the
the DMS Stored messages are get
displayed to the user for|
selection getD
getObjectsOfType.
(GUIDMS) |
getObjectsOfType.
how (GUIDMSStoredMessage)
actionPerformed (OK or CANCELY
[user cancelled op.]
| closeWindow
cancell
setMsgltemData——
create
skt When the add succeeds the server
pushes the PlanitemAdded event.
tDM: This event is caught by the GUIPlanModule
and a new GUIDMSStoredMsgitem is created.
The GUIDMSStoredMsgltem created in the
process shown in this diagram is temporary
getPlan and is deleted when user closes the dialog.
-addten :
[no rights]
AccessDenied
[other error]
CHART2Exception
ucce:
——
[error]
"Display Error”
[error]
The window is
left open to allow
the user to create
multiple plan items
in succession

Figure 29. GUIDMSModule:AddDMSStoredMessageltem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-54 11/20/00

3.6.2.3 GUIDMSModule:BlankDMSInMaintenanceMode (Sequence Diagram)

This sequence diagram shows how a user with appropriate rights can blank a DMS when
the device is in maintenance mode. The sequence is initiated when the user right clicks on a
GUIDMS object in the navigator and selects the “Blank™ menu item. The GUIDMS object
creates a CommandStatus object and then calls the Chart2DMS object that it wraps to
perform the blank operation. The progress of the blank operation is displayed to the user on
the command status window, which is updated as and when the server updates the
CommandStatus object that was passed to it along with the blank command. If successful,
the server will push CORBA events indicating the changed display status.

£

Administrator

GUIDMS Chart2DMS

(o]
S

CommandStatusHandler

" " The progress of the blank
[user ?Ilglé?o?]r;’glggrmnéznu item]; operation is monitored using
i ! the command status object.
L The server updates the
This menu item will be get the CommandStatus with
disabled if the user does i the progress of the command.

not have the rights or the getTaken In case of failure the
device is not in maintenance i Cummafndtshtatfus?I contains the
mode. ———————getCommandStatusHandler- reason for the failure.

createCommandStatt

) creat CommandStatus
blankSign————>

[no rights]
AccessDenied

[DMS controlled by different
op center and no,

override rights]
ResourceControlConflict

[other error]

9 If successful, this will push a
CHART2Exception DMSStatusChanged event. If the

DMS was in use, it may also push

a ControllingOpCtrChanged event.
These events are handled in the GUI
by notifying the relevant GUI
components via the DataModel.

Figure 30. GUIDMSModule:BlankDMSInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-55 11/20/00

3.6.2.4 GUIDMSModule:CreateDMSStoredMessage (Sequence Diagram)

This diagram shows how a DMS stored message is created. When the user right clicks on
the GUIMessageL.ibrary object, the library supporters registered in the system are called on
to return the menu item string that is to be displayed to the user in order to create the library
message that it supports. In this case, the operator selects the menu item to create a DMS
message that is supported by the GUIDMSModule. If the user does not have the appropriate
functional rights, the corresponding menu items are disabled. All the library supporters are
then called upon to create the library message object. Only one of the supporters will
identify the menu item that was selected (in this case it is the GUIDMSModule), and
proceeds to create the appropriate library message. The GUIDMSModule creates a
temporary GUIDMSStoredMessage object to edit, and calls doProperties to show the
DMSMessageEditor dialog. As the user types, banned words will be shown to the user.
When the user clicks OK, the message editor will check for disapproved words and
provides suggestions to replace these words. A new DMSMessage object is created and the
setMessage method is called on the GUIDMSStoredMessage wrapper object. Since the
wrapper does not contain a served StoredMessage object, it calls the message library to
create one. If successful, the server will create a new StoredMessage object and will push
an event to update all of the GUIs.

R1B2 GUI Detailed Design Rev. 0 3-56 11/20/00

% NavTree Gul Gl ibrary GUILibraryModule GUIDMSModule
Operator
|_Iright clickl__f
mousePressed ~|__[right clickl
P get
getLibrarySupporters>;
p
Pl
[user clicks on "Create
DMS Stored Message'————>1
actionPerformed
L GUIDMSStoredViessage
create—>| GUDMSStoredVessage

[creae > pyiivessageEditor

MessagelLibrary

GUIDictionary

ho

[types text for message]

keyPressed

[banned words]

WordList

[banned words]
"Display banned words"
7

(OK or CANCEL);

{user cancelled operation]

This temporary GUIDMSStoredMessage
object will be deleted. When the server
h

p the event,
the GUILibraryModule will catch the event

object to create a new GUIStoredMessag
When one does, the GUILibraryModule will

add the GUIStoredMessage to the DataModel.

and call the appropriate GUIStoredMessageCreator
e. o

X

X

closeWindow returns
suggested wor
[cancel}
P \op
i words].
WordList
“allow user to replace
——orignore
[*for each disapproved word] dispproved words”
[create DMSMessage
get
-getToken——
[no rights]
AccessDenled If successful, the
[bad message content] server will push a
DisapprovedMessageContent StoredMessageAdded
! it
[other error]. even
CHART2Exception
ucce:
[error]
“Display error"
[error
N closeWindow

Figure 31. GUIDMSModule:CreateDMSStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-57

11/20/00

3.6.2.5 GUIDMSModule:CreateResponsePlanitem (Sequence Diagram)

This diagram shows how a DMS response plan item is added to the system. The user drags
a GUIDMS or a GUIDMSStoredMsgltem object over the GUITrafficEventHolder (the
object representing the traffic event in the GUI) and drops it. Since the GUIDMS and
GUIDMSStoredMsgltem objects both implement the ResponseDataCreator interface, the
GUITrafficEventModule can use either of these to create a DMSResponsePlanltemData,
which it then uses to create a ResponsePlanltem. See the sequence diagram:
GUITrafficEventModule: AddResponsePlanitem for details.

The dragging of GUIDMS or GUIDMS StoredMessageltem objects to a
GUITrafficEventHolder to create a response plan item is described in the
sequence diagram: GUITrafficEventModule:AddResponsePlanitem. Both
the GUIDMS and the GUIDMSStoredMessageltem serve as
ResponseDataCreators (an interface which they implement).

Figure 22. GUIDMSModule:CreateResponsePlanltem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-58 11/20/00

3.6.2.6 GUIDMSModule:DiscoverEventchannels (Sequence Diagram)

This diagram shows the processing involved in the DMS event channel discovery, which
takes place at startup of GUIDMSModule and periodically from thereon. The
GUIDMSModule queries the event channels from the trading service, creates a
PushConsumer to receive the CORBA events, and adds the PushConsumer objects to the
EventConsumerGroup for maintenance of the event channels.

X

GUIDMSModule
GUI

Discovery
Thread

discoverEventChannels

CORBAUtilities

EventConsumerGroup

This queries the

trader for event channel
objects for DMS control

events

findObjects:

[*for each event channel found]

create

PushEventConsumer

1A
add

Figure 32. GUIDMSModule:DiscoverEventchannels (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-59

11/20/00

3.6.2.7 GUIDMSModule:DiscoverObjects (Sequence Diagram)

This diagram shows the processing involved in the discovery of Chart2DMS corba objects,
which takes place at startup of GUIDMSModule and periodically from thereon. The
GUIDMSModule queries the trading service for all the DMS Factory objects. Each factory
object is called on to return the DMS objects that it serves. If the object discovered is
already in the data model, no action is required. Otherwise, each of the objects discovered
in this fashion, is passed on to the GUIDMSModelFactory that is capable of identifying the
DMS model type using its collection of GUIDMSModelSupporter objects, and creating a
GUIDMS object that wraps this Chart2DMS corba object. Thus the GUIDMS object
created in this manner, is model specific (refer to the DMSModuleArchitecture class
diagram for the classes that derives from GUIDMS to represent specific DMS models). It is
then added to the data model.

GUHAR

GUIDMSModule |CORBAU(i\ilies DMSFactory GUIDMSModelFacton GUIDMSA | CHART2DMS | DataModel

GUI Discovery Thread

Query the
trader for DMS
factory objects The GUI DMS wrapper
created will be model

[———discoverObjects:

specific i
by a model supporter, or
aDefault DMS otherwise.

I findAllObjectsOfType—>

-getObject:

[object not found in data model]
createGUIDMSModel H
for each model
Fsupporter registered—{
createGUIDMSModel create 5 eubws

i [dms is har notifer]
getObject

[*for each
DMS facory [*for each
found]]

Figure 34. GUIDMSModule:DiscoverObjects (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-60 11/20/00

3.6.2.8 GUIDMSModule:DMSRemovedEvent (Sequence Diagram)

This diagram shows how a DMSDeleted event is handled in the GUI. First, an attempt is
made to get the GUIDMS object from the DataModel. If it exists, the GUIDMS is removed
from the DataModel. The DataModel notifies all the observers about the removal of the
DMS from the system. This change will be reflected on all the observer windows.

£

CORBA
Event
Service GUIDMSModule GUI DataModel GUIDMS
push(DMS id, event info)
getDataModel
getObject
[DMSDeleted]
objectRemoved(GUIPlan)

Looks up the DMS
in the data model using
the DMS ID

Ialat,
aelete

The DataModel notifies

all observers about

the DMS removal. This

will cause the observers to
remove their references

to the GUIDMS. The object
is eventually removed

by the Java garbage
collection.

Figure 35. GUIDMSModule:DMSRemovedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-61 11/20/00

3.6.2.9 GUIDMSModule:DMSStateChangeEvents (Sequence Diagram)

This sequence diagram shows the processing involved in handling a DMS configuration
change or a DMS Status Change event that is pushed by the server. The event info
accompanying the event includes the DMS ID whose state has changed and the changed
state information. The GUIDMS object corresponding to the DMS ID in the event info is
looked up in the data model. This GUIDMS object updates itself with the current state and
alerts the data model, which informs all the registered observers about the change. The data
passed on to the GUIDMS is DMS model dependent. Since the GUIDMS is of the same
model type as the data, it can interpret the event data and update its state.

o

A

CORBAEvent
Service

GUIDMSModule

‘ DataModel ‘ ‘

GUIDMS

The type of event
pushed here can be
DMSConfigChanged or
DMSStatusChanged.
The event info. contains
the DMS ID and the data
asssociated to

get

getDataModet——>}

the DMS configuration or
DMS status as the case
may be.

getObject:

“update cache™

get

getDataModet

objectUpdated——

The GUIDMS object corresponding

to the DMS ID in the event info is
looked up in the data model. This
GUIDMS object updates itself with

the current state and alerts the

data model, which informs all the
registered observers about the change.

_.| The data passed on to the GUIDMS is

DMS model dependent. Since the
GUIDMS is of the same model type as
the data, it can interpret the event

data and update its state.

Figure 36. GUIDMSModule:DMSStateChangeEvents (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-62

11/20/00

3.6.2.10 GUIDMSModule:Login (Sequence Diagram)

This sequence of events is initiated when a user logs in to the system using either the login
or change user commands from the toolbar window. These commands cause the
GUI:LoginBasic sequence or GUI:ChangeUserBasic to be performed. As part of either of
these sequences, the GUI will call each of the installed modules giving them a chance to
perform necessary operations to set up data specific to a particular user. The
GUIDMSModule does not currently need to perform any processing when a user logs in.

X

User

@
c

GUIDMSModule

—login or changeUser—>

See GUI:LoginBasic and
GUI:.ChangeUserBasic
sequence to see details

on login operation processing.

loggedin

Currently the module
does not perform any
work on login.

Figure 37. GUIDMSModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-63 11/20/00

3.6.2.11 GUIDMSModule:Logout (Sequence Diagram)

This sequence of events is initiated when a user logs out of the system using either the
logout or change user commands from the toolbar window. These commands cause the
GUI:LogoutBasic or GUI ChangeUserBasic sequences to be performed. As part of these
sequences, the GUI will call each of the installed modules giving them a chance to perform
necessary operations to clean up data for a particular user. The GUIDMSModule does not
currently need to perform any processing when a user logs out.

X

User

@
c

GUIDMSModule

logout or changeUser———>

See GUI:LogoutBasic and
GUI:.ChangeUserBasic
sequence to see details

on logout operation processing.

loggedOut

Currently the module
does not perform any
work on logout.

Figure 38. GUIDMSModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-64 11/20/00

3.6.2.12 GUIDMSModule:ModifyDMSSettings (Sequence Diagram)

This sequence shows how an operator may alter the configuration of a Default DMS. Refer
to the ModifyFP9500Settings sequence diagram for the processing required for a specific
DMS model. The operator initiates this action by right clicking on the DMS in a window
and selecting the “Properties” menu item. If the user does not have the appropriate
functional rights, this menu item will not be made available. The GUIDefaultDMS object
creates a DefaultDMSPropertiesDialog, which displays the current DMS configuration and
allows the user to modify the current configuration. When the operator is done editing the
configuration, clicking on the “OK” button on the dialog causes the GUIDefaultDMS
module to create a CommandStatus object, and a DMSConfiguration object and then call
the Chart2DMS object to reconfigure itself by calling the setConfiguration method. The
setConfiguration returns control immediately and performs the DMS reconfiguration
operation asynchronously, barring any user privilege issues. The operation may involve
field communication for certain device models. The progress of the command is
communicated to the user via the CommandStatus object, which is updated by the server.

There are certain DMS model dependent

paramaters that need to be set to configure
a DMS. Hence the DMSProperties dialog
varies for different DMS models. The model
specific class that sub-classes GUIDMS
Operat GUIDefaultDMS dlpsplays the DI e dialog | Chart2DMS | | Gul | CommandStatus Handler
perator for operator input. This diagram shows the

processing for a default DMS object,

This menu item will be creat
grayed out if the user DefaultDMSPropertiesDialog
does not have

sufficient rights.

-getConfigurationr————
i Atthis point the user
will be Shown the
DMS Properties dialog
This dialog is modeless Thisisamodel L\
and will apply the changes dependent CORBA
to the DMS when the user value type object
actionPerformed (OK or CANCEL—————>{ | Presses the OK button. 7

[user cancelled operation]
closeWindow

< [user pressed OK] create “| bMSConfiguration
setConfiguration

createCommandStatu
{creale™ commandStatus
getToker

etConfiguration:

: The setConfiguration returns control

| immediately and performs the DMS

| reconfiguration operation asynchronously,
barring any user privilege issues. The operation

[no rights],
AccessDenied

[other error]. may involve field communication for
CHART2Exception certain device models. The progress of

the command is communicated to the user
via the CommandsStatus object, which is
updated by the server.

[error]
“Display error message
to the user”

closeWindow

X

At this point, the user can

track progress of the command

through command status window

Once the DMS is successfully re-configured,
the server pushes a DMSConfigChanged
event that is caught by the GUI and the
updated configuration is reflected in

the data model

Figure 39. GUIDMSModule:ModifyDMSSettings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-65 11/20/00

3.6.2.13 GUIDMSModule:ModifyDMSStoredMessage (Sequence Diagram)

This diagram shows how the contents of a stored message are modified. The user clicks on
an existing GUIDMSStoredMessage object, and clicks on the “Properties” menu item. The
GUIDMSStoredMessage then invokes the DMSMessageEditor dialog. On initialization, the
dialog calls back to the GUIDMSStoredMessage wrapper object to get the message content,

which calls back to the StoredMessage object in the server, if necessary. When the

DMSMessage is returned, the dialog can be initialized from the existing message contents.
As the user types in text for the message, banned words will be displayed. When the user

clicks OK, the message editor will check for disapproved words and provides suggestions
to replace these words. A new DMSMessage object is created with the user modifications.

The GUIDMSStoredMessage is called to set the message, which in turn calls the

StoredMessage object in the server. If successful, the server will push a CORBA event to

update the clients.

£

Operator

have rights

GUDMStoredMessage
[clicks on
. "Properties"]. S
\ —creat DMSMessageEditor

The menu item will
be disabled if the
user does not

actionPerformed

StoredMessage DMSMessage

<—getMessageContent—

“Initialize Dialog"

[types text for message]
keyPressed

GUIDictionary GUI

[banned word:

formed (OK or CANCEL)

“for each disapproved word]

)

Displaybanned VWords

[user cancelled operation]

closeWindow
e

[banned words]
WordList]

ved words]
dList

“allow user to
or ignore disappro
j O lanore disap

eplace
ved words”

Wor

“| DMSMessage

[no rights]
AccessDenied

.. [contains banned words]_______
BisapprovedMessageContent
[other erfor]

CHART2Exception

ferror]
"Display Error"

closeWindow

If successful, the
server will push a

StoredMessageChang
event

)

This represents the
.| modified message that
.+ will be stored.

Figure 40. GUIDMSModule:ModifyDMSStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-66

11/20/00

3.6.2.14 GUIDMSModule:PolINow (Sequence Diagram)

This sequence diagram shows how a user with appropriate rights can perform a forced
polling of a DMS, when the device is in maintenance mode. The sequence is initiated when
the user right clicks on a GUIDMS object and selects the “Poll Now” menu item. The
GUIDMS object creates a CommandStatus object and then calls the Chart2DMS object that
it wraps to perform the operation. The progress of the poll now operation is displayed to the
user on the command status window, which is updated as the server updates the
CommandStatus object that was passed to it along with the poll command. If successful, the
server will push CORBA events indicating the changed DMS status.

o
. GUIDMS Chart2DMS GUI CommandStatusHandler
Administrator -
[user clicks on pollNow menu itemy; The progress of the pollNow

T - operation is monitored using

| aetionPerformed the command status object.
The server updates the

This menu item will be get the CommandStatus with
disabled if the user does the progress of the command.

not have the rights or the getTc;ken In case of failure the
device is not in maintenance i CommandStatus contains the
mode. ———————getCommandsStatusHandler——————> reason for m? failure.

createCommandStatu:

{—creat CommandStatus
pollNow-

[no rights]
AccessDenied

[DMS controlled by different The event is handled in the GUI
opcenterandno_ by notifying the relevant GUI

override rights] i
ResourceControlConflict components via the DataModel.

If successful, this will push a
DMSStatusChanged event.

[other error]
CHART2Exception

Figure 41. GUIDMSModule:PolINow (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-67 11/20/00

3.6.2.15 GUIDMSModule:PutDMSInMaintenanceMode (Sequence Diagram)

This diagram shows how a DMS is put into maintenance mode. The Administrator right
clicks on a GUIDMS and clicks on the “Put In Maintenance Mode” menu item. The
GUIDMS creates a CommandStatus object to monitor the progress of the command and
calls the CHART2DMS object (which it wraps) to put it in maintenance mode. If
successful, the server will push a CORBA event indicating that the comm mode has been

Q
;t ‘ GUIDMS ‘ CHART2DMS ‘ [elV]} CommandStatusHandler
Administrator
[clicks on "Put In Maintenance
Mode" menu item}—
actionPerformed get
getToken

getCommandStjatusHandIer;

This menu item will be b createCommandsStatu
disabled if the user does not —Ccreat CommandStatus
have rights or if the device is putinMaintenanceMode~=>;

e. ™

already in maintenance mod X . B
é,[|r1 maintenance mode]_ If successful, this will push a
CHART2EXxception DMSStatusChanged event.
If the DMS was in use, it may
[no rights] also push ControlingOpCtrChanged
AccessDenied and ResponsePlanitemStatusChanged .
events. The GUI will catch these events .| The server will
[DMS controlled by and will update the GUI wrapper update the CommandStatus
ic.....different op ctr and___ objects as needed. object with the progress
no override rights]] of the command, which is
ResourceControlConflict; i shown to the user on a GUI
i Window. In case of a failure,
the reason for the failure is also
shown to the user.

Figure 42. GUIDMSModule:PutDMSInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-68 11/20/00

3.6.2.16 GUIDMSModule:PutOnline (Sequence Diagram)

This diagram shows how a DMS is put online. The Administrator right clicks on a
GUIDMS and clicks on the “Put Online” menu item. The GUIDMS creates a
CommandStatus object to monitor the progress of the command and calls the
CHART2DMS object (which it wraps) to put it online. If successful, the server will push a

CORBA event indicating that the comm mode has been changed.

o]

A

Administrator

actionPerformed

This menu item will be
disabled if the user does

mode.

| GUIDMS |

| [user clicks on"Put Online" menu ilem]9

not have the rights or the
device is not in maintenance

| Chart2DMS |

| e |

CommandStatusHandler

get

getTokerr

getCommandStatus Hgndleri

createCommandStatus

—putOnline-

[no rights]

AccessDenied

[DMS controlled by different

override rights]
ResourceControlConflict

[other error]

CHART2Exception

Figure 43.

R1B2 GUI Detailed Design Rev. 0

The progress of the

operation is monitored using
the command status object.
The server updates the

the CommandStatus with

the progress of the command.
In case of failure the
CommandStatus contains the

If successful, this will push a
DMSStatusChanged event.

by notifying the relevant GUI

The event is handled in the GUI
components via the DataModel.

3-69

reason for the failure.

create CommandStatus

GUIDMSModule:PutOnline (Sequence Diagram)

11/20/00

3.6.2.17 GUIDMSModule:RemoveDMS (Sequence Diagram)

This diagram shows how a DMS is removed from the system. The Administrator right
clicks on a GUIDMS object and clicks on the “Remove” menu item. The GUIDMS creates
a CommandStatus object to monitor the progress of the command and calls the remove()
method of the Chart2DMS object (which it wraps). If successful, the server will push a
CORBA event indicating that the DMS was removed.

o
- GUIDMS CommandStatusHandler Chart2DMS GuUI
Administrator -
[user clicks on the
"Remove”

i menu item]

i remove

H get

getToken

i getCommandStatusHandler
f<-i-[AccessDenied]

i rcreateCommandStatus—>

(<-—{CHART2Exception]— create CommandStatus oo User D\
T confirmation

showYes Noljialou

[user cancelled operation]
completed

This menu item remove
will be disabled [no rights]
if the user does AccessDenied

not have the
correct rights.

[any other error]
CHART2Exception

If successful, this
will cause a DMSDeleted
ucce: event to be pushed through
S the event service. When
| caught, the GUIDMS will
completed— be removed from the DataModel.
i Refer to DMSRemovedEvent sequence
diagram.

The completion status

will be shown in the command
status window. In case of a failure,
the error message returned from
the server is also displayed

in the command status.

Figure 44. GUIDMSModule:RemoveDMS (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-70 11/20/00

3.6.2.18 GUIDMSModule:Reset (Sequence Diagram)

This sequence diagram shows how a user with appropriate rights can reset a DMS, when
the device is in maintenance mode. The sequence is initiated when the user right clicks on a
GUIDMS object and selects the “Reset” menu item. The GUIDMS object creates a
CommandStatus object and then calls the Chart2DMS object that it wraps to perform the
operation. The progress of the reset operation is displayed to the user on the command
status window, which is updated as the server updates the CommandStatus object that was
passed to it along with the reset command. If successful, the server will push a CORBA
event indicating the changed DMS status.

£

Administrator

GUIDMS Chart2DMS

(0]
<

CommandStatusHandler

" . The progress of the reset
[user ?"g'égo?q"‘:,g?oer‘m";%n“ item]) operation is monitored using

the command status object.

. The server updates the
This menu item will be get the CommandStatus with
disabled if the user does i the progress of the command.

not have the rights or the getTaken In case of failure the
device is not in maintenance i Comma;ndtsr:atrsl contains the
mode. —————————getCommandStatusHandler reason for the failure.

createCommandStatt

create——> commandStatus
resetController——-

[no rights]
AccessDenied

If successful, this will push a
§ DMSStatusChanged event. If the
[DMS controlled by different DMS was in use,git may also push
P opcenterandno a ControllingOpCtrChanged event.
override rights] These events are handled in the GUI
ResourceControlConflict by notifying the relevant GUI
components via the DataModel. Refer
[other error] _ to the DMSStateChangeEvents
CHART2EXxception sequence diagram. i

Figure 45. GUIDMSModule:Reset (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-71 11/20/00

3.6.2.19 GUIDMSModule:SetMessagelnMaintenanceMode (Sequence Diagram)

This shows how a message is set on a DMS when it is in maintenance mode. The user right
clicks on the GUIDMS object and clicks on the “Edit Message (Auto)” or “Edit Message
(Manual)” menu item. The GUIDMS object invokes the DMSMessageEditor dialog. The
DMSMessageEditor dialog is initially populated with the current message displayed on the
DMS, if any. The user may use this dialog to type in a new message and preview what that
message will look like formatted for the selected DMS. As the user types a text message,
the banned words are displayed. When the user clicks OK, the message editor will check
for disapproved words and provides suggestions to replace these words. A DMSMessage
object is created and GUIDMS is called to set the message. The GUIDMS object creates a
CommandStatus to monitor the progress of the command, then calls the CHART2DMS
object which it wraps. If successful, the server will push CORBA events to update the
clients for any state changes.

GUDMSNodule | | GUIDictionary

Ad t

% GUIDMS
ministrator MutiFormatter | | MutiConverter
o

<-plainTextToMult}

[-———"actionPerformed (OK or CANCEL)———>1

[disapproved Words]
WordList

replace
roved

(OK]
PainTextToMut

ferror
GUIExcepiion

sssssssss

X
Figure 46. GUIDMSModule:SetMessagelnMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-72 11/20/00

3.6.2.20 GUIDMSModule:ShowTrueDisplay (Sequence Diagram)

This sequence shows how an operator may view the current message displayed on a
particular DMS. The view will be formatted to show the message as it looks on the sign.
The operator initiates this sequence by right clicking on the desired DMS in a window and
selecting the “Show Display” menu item.

| DataModel

Operator

| | GUIDMS |

MultiConverter

(2

showTru eDisplay————>

rereate™ pyvisTrueDisplay
DMSMessageView
*create%
he
parseMultt
get
getDataModet
attachObserver
how
This occurs when
the message changes on update————>}
the DMS in the field and —
the event has been caught Check if update
by this GUL. The data model is for this DMS
updates all attached observers. <« 1
[not for this DMS]
parseMultt

Figure 47. GUIDMSModule:ShowTrueDisplay (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-73 11/20/00

3.6.2.21 GUIDMSModule:Shutdown (Sequence Diagram)

This diagram shows processing involved in the shutdown of the GUIDMSModule. At the
time of GUI shutdown all of the installable modules including the GUIDMSModule is
called on to perform cleanup operations by calling their shutdown method. On shutdown,
the GUIDMSModule disconnects itself from the ORB.

GUI GUIDMSModule P

>

User

Exit Toolbar S
Window

shutdown

shutdown———=>
—deactivate_object——=>

delete

X

Figure 48. GUIDMSModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-74 11/20/00

3.6.2.22 GUIDMSModule:Startup (Sequence Diagram)

This diagram shows the processing involved during startup of the GUIDMS module. At
GUI startup time, each of the installable modules including the GUIDMSModule is
initialized by calling their startup routines. The GUIDMSModule connects itself to the
ORB in order to receive DMS related CORBA events from the event service. A
DMSNavGroup object is created to manage the GUIDMS related objects in the GUI
navigator. A GUIDMSModelFactory object is created which will aid the GUIDMSModule
in the creation of model specific GUIDMS objects. Finally, the GUIDMSModule registers
itself with the GUIPlanModule, GUILibraryModule and the GUITrafficEventModule in
order to be able to support GUIPlanltem, GUIDMSStoredMessage and
GUIDMSResponsePlanltem objects respectively.

factories need to be registered for DMS
_{ module valuetypes like DMSConfiguratiol
| DMSStatus and so on.

Anote for the developer:
At startup time the CORBA valuetype
n,

o
: GUIDMSModule
Gul

GUIPlanModule DataModel GUIDMSModuleProperties GUIDMSModelSupporter POA GUlLibraryModule GUITraffi
startup—>} |
-activate_object
creats The GUIDMSModelSupporter
Disibrti, interface is implemented by
get each of the DMS Models L
supported in the system. Refer Connect to the
[<—getDataModet—; to the DMSModuleArcitecture ORB to receive
class diagram for details on the CORBA events
obij model supporters pushed through
the event channel.
e GUIDMSModelFactory
tartup
-getDMSCreationMenuReps=>
[*for each DMS
model supporter
"store the menu string
system] supporter mapping"
e«
-getMultiForma
o
get
—addPlanitemSupporter-
: get
-addLibrarySupporter
get
-addResponsePlanitemCreator

within a try block. If any of those modules
are not installed, the exceptions thrown ar
caught and ignored. The GUIDMSModule
initialization is not affected.

The module will exist throughout L y

the life of the application and - - -

will be cleaned up at shutdown. These registration methods should be j
e

Figure 49. GUIDMSModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-75 11/20/00

3.6.2.23 GUIDMSModule:TakeOffline (Sequence Diagram)

This sequence diagram shows how an operator with the appropriate rights can take a DMS
offline. The sequence is initiated when the user right clicks on a GUIDMS object in the
navigator and selects the “Take Offline” menu item. The GUIDMS creates a
CommandStatus object and calls the CHART2DMS object (that it wraps) to execute the
offline command. The progress of the operation is displayed to the user on the command
status window, which is updated as the server updates the CommandStatus object that was
passed to it along with the offline command. If successful, the server will push a CORBA
event indicating that the DMS has been taken offline.

) GUIDMS Chart2DMS Gu
Administrator

: " - " The progress of the

[user c!’!cks :gligr?g:r%ﬂ:?eed menu item]; operation is monitored using
the command status object.
The server updates the

CommandStatusHandler

This menu item will be get the CommandStatus with
disabled if the user does m%g‘;t;gg??;lgﬁelhtehgommand.
not have the rights or the

device is not ingmaimenance getToken CommandStatus contains the
mode. reason for the failure.

7ge1CommandStatustandleri

createCommandStatu

creat
—takeOffline——————> CommandStatus

[no rights]

AccessDenied
[DMS controlled by different Esw‘l‘g’gﬁjﬁ;“c'ﬁ';fg‘gé"eﬁ,“eﬁa
S op center ang e The event is handled in the GUI
°Ve”é:e g IC] i by notifying the relevant GUI
ResourceControlConflict components via the DataModel.

[other error]
CHART2Exception

Figure 50 GUIDMSModule: TakeOffline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-76 11/20/00

3.6.2.24 GUIDMSModule:TrafficEventResponse-BlankDMS (Sequence Diagram)

This diagram shows how the closing of a traffic event blanks a DMS that was earlier used
to display a message in response to the event. A DMS may also be blanked when the
response item associated to this DMS is removed from the traffic event. The user right
clicks on the GUIDMSResponsePlanltem or the GUITrafficEvent objects and selects the
appropriate menu item. In both cases, the remove method of the
GUIDMSResponsePlanltem wrapper object will be called, which will in turn call the
served ResponsePlanltem object that it wraps. If successful, the server will push events to
all GUIs indicating the changed status.

: : GUIDMSResponsePlanitem ResponsePlanitem GUI
Operator _
[removes response
item from event or N
closes event]
remove get
getToken
remove—————=—>
[o rights] e When a ResponsePlanitem of DMS B
AccessDenied e variety is removed, a device command
. T | is sent to blank the earlier message that
[not online]__. was set, when the item was executed.
CHART2Exception If the sign was successfully blanked, the
; server pushes a DMSStatusChanged event,
d[gg/rlgr:? oups gt%r?d ControllingOpCtrChanged event, and
S no override rights]] ResponsePlanStatusChanged event.
ResourceControlConflict The GUIDMSModule listens to these events
and causes the updates to happen on the
appropriate GUIDMS object.

The server updates the progress

of the command on the traffic

event dialog. This is possible

because the ResponsePlanltem object
is also a CommandStatus.

Figure 51. GUIDMSModule:TrafficEventResponse-BlankDMS (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-77 11/20/00

3.6.2.25 GUIDMSModule:ModifyFP9500Settings (Sequence Diagram)

This sequence shows how an operator may alter the configuration of a FP9500 DMS. In
fact the processing shown here will be the same for any other model of DMS in the system.
Refer to the ModifyDMSSettings sequence diagram for the processing required for a
default DMS. The operator initiates this action by right clicking on the DMS in a window
and selecting the “Properties” menu item. If the user does not have the appropriate
functional rights, this menu item will not be made available. The GUIFP9500 object creates
a FP9500PropertiesDialog, which displays the current DMS configuration and allows the
user to modify the current configuration. When the operator is done editing the
configuration, clicking on the “OK” button on the dialog causes the GUIFP9500 module to
create a CommandsStatus object, and a DMSConfiguration object and then call the
Chart2DMS object to reconfigure itself by calling the setConfiguration method. The
setConfiguration return control immediately and performs the DMS reconfiguration
operation asynchronously, barring any user privilege issues. The operation may involve
field communication for certain device models. The progress of the command is
communicated to the user via the CommandStatus object, which is updated by the server.

There are certain DMS model dependent
paramaters that need to be set to configure
a DMS. Hence the DMSProperties dialog
varies for different DMS models. The model
specific class that sub-classes GUIDMS
Operator EP9500DMS displays the appropriate DMSProperties dialog Chart2DMS Gul CommandStatusHandler
P for operator input. This diagram shows the
—doPrope required for a FP9500 DMS
This menu ftem wil be L o5
grayed OL;: if the user creal EP9500PropertiesDialog
loes not have
sufficient rights
getConfiguratior
.- At this point the user
will be shown the
DMS Properties dialog.
This dialog is modeless Thisis amodel L\
and will apply the changes dependent CORBA
to the DMS when the user value type object
actionPerformed (OK or CANCELy—————> | Presses the OK button 7
[user cancelled operation]
closeWindow
create ;
il luserpressedOK] | " EP9500Configuration
setConfiguration
get
sHandler
o dStatu
getToken [creale™ commandstatus
etConfiguratior |
| The setConfiguration returns control
alno fights]. - “~._| immediately and performs the DMS
« ~{ reconfiguration operation asynchronously,
i barring any user privilege issues. The operation
[other error] iinvolves field communication. The progress of
CHART2Exception the command is communicated to the user
ucce: via the CommandStatus object, which is
updated by the server.
[error]
“Display error message
to the user”
Lerrory
closeWindow

At this point, the user can

track progress of the command

through command status window.

Once the DMS is successfully re-configured,
the server pushes a DMSConfigChanged
event that is caught by the GUI and the
updated configuration is reflected in

the data model.

Figure 52. GUIDMSModule:ModifyFP9500Settings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-78 11/20/00

3.6.2.26 GUIDMSModule:TrafficEventResponse-SetDMSMessage (Sequence Diagram)

This diagram shows how a message is set on a DMS in response to a traffic event. The
operator right clicks on a GUIDMSResponsePlanltem object and clicks on the “Execute”
menu item. The GUIDMSResponsePlanitem calls the execute() method of the
ResponsePlanltem object that it wraps. If successful, the server will push CORBA events
indicating the changes to the state of the DMS. The server will also push events to keep the
GUIs updated with the current status of the command.

; : GUIDMSResponsePlanitem ResponsePlanitem GUI
Operator -
| __[clicks on "Execute"] S
%, actionPerformed
execute
This menu item get
will be disabled if getToken
the user does not
have rights. N
execule
[no rights] T When a ResponsePlanitem of DMS AN
AccessDenied variety is executed, a pre-fabricated
Tnot online] message is set on the DMS in response
CHART2Exception ~~{ to the traffic event.
. If the message was set successfully, the
[DMS in use by a server pushes a DMSStatusChanged event,
S differentopctrand_ . ControllingOpCtrChanged event, and
no override rights] ResponsePlanStatusChanged event.
ResourceControlConflict The GUIDMSModule listens to these events
] [banned words]___________| and causes the updates to happen on the
DisapprovedMessageContent appropriate GUIDMS object.

The server updates the progress
. of the command on the traffic
~| event dialog. This is possible
because the ResponsePlanitem object
is also a CommandStatus.

Figure 53. GUIDMSModule:TrafficEventResponse-SetDMSMessage
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-79 11/20/00

3.7 GUIDictionaryModule

3.7.1 Class Diagrams

3.7.1.1 GUIDictionaryModuleClasses (Class Diagram)

This diagram shows the data hierarchy of the GUIDictionaryModule and the objects it
supports.

java.awt.event.
ActionListener

Navigable
[
Uniquelyldentifiable ‘ Menuable ‘ NavListDisplayable NavTreeDisplayable
A A ‘
GUIDictionary GUIDictionaryNavGroup
* 1
m_bannedWordList
m_approvedW ordList
ddDicti dicti
getBannedWords(accessToken) :WordList & ictionary(clctionary)
1 1 | removeBannedWordList(accessToken, bannedWords)
oraLi Token, bannedWords) *

DictionaryWrapper | checkForBanned) ToCheck, : WordList 1

bannedWord: ist) * 1 1 *

bannedw ordsRemoved(wordList) D ModelObserver

refreshBannedWordListCache()

getApprovedWords(accessToken) :WordList

removeApprovedW ordList(accessToken, approvedWords) 1

addApprovedWordList(accessToken, approvedWords)

-
ggrpfg\zgmordswded(wormlsl) ToCheck, “ WordList ‘ GUIModelObserver javax.swing.JFrame
approvedWordsRemoved(wordList)

1
refreshApprovedWordListCache() GuUI

1

*

DictionaryPropertiesDialog

CosEvent.PushConsumer InstallableModule

5

GUIDictionaryModule

get()

Figure 54. GUIDictionaryModuleClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-80 11/20/00

3.7.1.1.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.7.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.7.1.1.3 DictionaryPropertiesDialog (Class)

This dialog is the editing interface which allows the user to view, add, and remove banned
words from a given dictionary.

37.1.14 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.7.1.1.5 GUIDictionaryNavGroup (Class)

This class is used to support the required Navigator functionality to group anu dictionary
objects together for the purpose of being displayed together under one branch of the
Navigator tree.

3.7.1.1.6 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.7.1.1.7 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu

R1B2 GUI Detailed Design Rev. 0 3-81 11/20/00

items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.7.1.1.8 GUIDictionary (Class)

This class is a GUI wrapper for the Dictionary class. It adds functionality for caching the
data and for adding GUI-specific functionality such as menus and Navigator support.

3.7.1.1.9 GUIDictionaryModule (Class)

This class is an installable GUI module that handles all of the dictionary-specific
functionality in the GUI.

3.7.1.1.10 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.7.1.1.11 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the
left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

3.7.1.1.12 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.7.1.1.13 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.7.1.1.14 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-82 11/20/00

3.7.1.1.15 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerance by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.7.1.1.16 java.awt.event. ActionL.istener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.7.1.1.17 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.7.1.1.18 ModelObserver (Class)

This interface must be implemented by any object that may need to be attached to the
DataModel as an observer and get updated as system objects are added, deleted or changed.

R1B2 GUI Detailed Design Rev. 0 3-83 11/20/00

3.7.2 Sequence Diagrams

3.7.2.1 GUIDictionaryModule:DictionaryApprovedWordProperties (Sequence Diagram)

This diagram shows how the editing of the approved words in a given dictionary will be
done. It begins with a user clicking on a menu item from the GUIDictionary’s context
menu. Since the GUIDictionary will be an ActionListener for the menu item, the
GUIDictionary will be called and then creates the DictionaryDialog. This dialog attaches
itself as an observer to the DataModel in order to catch any updates to the word list (which
will come through the event channel and then through the DataModel). It gets the list of
banned and approved words and displays them to the user. This dialog shows both the
banned word and approved word lists on two tabs. Approved word list can be viewed by
selecting the Approved Words tab. When the user provides a list of approved words to add
or remove, the GUIDictionary will make a call to the served Dictionary Wrapper object. If
the words are added or removed successfully, the Dictionary object will push an event
through the Dictionary event channel. (See the EventHandling diagram for details.) The
DataModel will then call the dialog’s update() method, and the dialog will ask the
GUIDictionary wrapper for the current list of words to display. Just before the dialog is
closed, it will detach from the DataModel.

ge‘eanneawmusr—{
getApprovedWordList——
[view righis only]
disabe all editing

features

s
o T
| fuser selects Approved Words tab and
types a approved word]
Scrol banned
words list to maich
typed word
— 4\'%
fuser clicks Add]
actonPerformed 7
Pauumpmmuwwm—‘
getToker

| |
———— ——lAccessDeniedor CHART2Excepion) «'7

move ton]
ﬁv&muvﬁwwuvedwumus

N

\ ’ i

{AccessDenied or CHART2Exception]
- ‘

?g etApprovedWordList——
e
dspi
{user closes dialog}
! getDatalodet

%J*Q

Figure 55. GUIDictionaryModule: DictionaryApprovedWordProperties
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-84 11/20/00

3.7.2.2 GUIDictionaryModule:DictionaryBannedWordProperties (Sequence Diagram)

This diagram shows how the editing of the banned words in a given dictionary will be done.
It begins with a user clicking on a menu item from the GUIDictionary’s context menu.
Since the GUIDictionary will be an ActionListener for the menu item, the GUIDictionary
will be called and then creates the DictionaryDialog. This dialog attaches itself as an
observer to the DataModel in order to catch any updates to the word list (which will come
through the event channel and then through the DataModel). It gets the list of banned and
approved words and displays them to the user. This dialog shows both the banned word and
approved word lists on two tabs. Banned word list is displayed on the top. When the user
provides a list of banned words to add or remove, the GUIDictionary will make a call to the
served Dictionary Wrapper object. If the words are added or removed successfully, the
Dictionary object will push an event through the Dictionary event channel. (See the
EventHandling diagram for details.) The DataModel will then call the dialog’s update()
method, and the dialog will ask the GUIDictionary wrapper for the current list of words to
display. Just before the dialog is closed, it will detach from the DataModel.

DataModel

W]

/

[/

\
44;44¥%%7L444444

[user selects banned words and S
Clicks Remove Banned Words button]

update
Fvemmaanneawmusa—‘ ‘
‘ o
| | g /
P ————— ——{AccessDenied or CHART2Exception} «‘7 4/‘
Ospay € ‘
31, [success |
getBannedw dhsl—‘\—‘ update
Tefresh
displayed
. words
I
‘ jigema‘amm »—T ‘
] X

Figure 56. GUIDictionaryModule:DictionaryBannedWordProperties
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-85 11/20/00

3.7.2.3 GUIDictionaryModule:Discovery (Sequence Diagram)

This diagram shows how the Dictionary event channels and Dictionary objects are
discovered and added to the system. This will be a periodic process, and the GUI will call
the GUIDictionaryModule repeatedly. When the GUI asks the module to discover event
channels, it looks up the Dictionary event channels in the trader. It then creates a
PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the
consumer to the channel and reattaches it if the event service is restarted. (Duplicate
channels will be ignored). The GUI then calls the module to discover objects. At this time
the module will query the Dictionary Wrapper objects in the trader. If any are found, it will
create an ldentifier to be used as a lookup key for use with the DataModel. If the
GUIDictionary wrapper object does not already exist in the DataModel, it is created and
added. Creating the GUI wrapper will cause the new wrapper to initialize its data by
making a remote call to the served Dictionary Wrapper object. The GUIDictionary is then
added to the GUIDictionaryNavGroup and the DataModel is called to propagate the
changes to any interested observers such as the DictionaryPropertiesDialog.

o Event
Consumer GUDictionary
rou

;: CosTrading. Group DataModel NavGroup
GUIDictionaryModule DictionaryWrapper Lookup

GuUI

[—discoverEventChannels—>

query (Dictionary.
event channels)

[* for each event channel] PushEventConsumer
create >

[* for each event channel]
add

discoverObjects:

query (Dictionary pper)

[<—getDataModel

Identifier

i__[dictionary not found]
create GUIDictionary

getToken

[* for next
discovered
dictionary]

repeat’ GelAppro

getClas:

N
setDictionaryClass
e

d(GUIDI y oupy

Figure 57. GUIDictionaryModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-86 11/20/00

3.7.2.4 GUIDictionaryModule:EventHandling (Sequence Diagram)

This diagram shows how dictionary events are propagated through the GUI when they are
pushed from the event channel. The ORB invokes the push method of the
DictionaryEventConsumer. The event data contains a byte array identifier, which is used to
create an ldentifier object to get the GUIDictionary object from the DataModel. The words

are added or removed from the wrapper’s cache, and then the DataModel is called to update
any observers that may be listening for updates, such as the DictionaryPropertiesDialog.

X

Corba
Event
Service

GUIDictionaryModule

push

[Dictionary.

DataModel

not found]

GUI GUIDictionary
getDataModet
{create Identifier
getObject
[Banned Words Added]
bannedW ordsAdded
[Banned Words Added]
add banned
words to list
[Banned Words Removed|
bannedWordsRemoved
[Banned Words Removed]
remove banned
words from list
[Approved Words Added]
approvedWordsAdded
[Approved Words Added]
add approved
words to list
[Approved Words Removed]
approvedWordsRemoved
[Approved Words Removed]
remove approved
words from list
getDataModet——
create
objectUpdated

Figure 58. GUIDictionaryModule:EventHandling (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-87

11/20/00

3.7.2.5 GUIDictionaryModule:Shutdown (Sequence Diagram)

This diagram shows what happens at shutdown. The module deactivated from the POA to

clean up.

GUIDictionaryModule

'U
>

GUI

——shutdown———>

——deactivate_object——=}

Figure 59. GUIDictionaryModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-88

11/20/00

3.7.2.6 GUIDictionaryModule:Startup (Sequence Diagram)

This diagram show the steps taken to initialize the GUIDictionaryModule. The GUI will
call the module’s startup method. The module will create a GUIDictionaryNavGroup and
add it to the DataModel so that the Navigator will display it. The module will store the
group for later use. The GUIDictionaryModule is activated using the POA so that it can

serve as a PushConsumer to receive dictionary events.

: : GUIDictionaryModule

GUI

startup

DataModel

Create GUIDictionaryNavGroup

store

nav ?I’OUD

(<——getDataModel

objectAdded

activate_object

Figure 60. GUIDictionaryModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-89

11/20/00

3.8 GUIHARModule

3.8.1 Class Diagrams

3.8.1.1 Dialogs (Class Diagram)

This diagram shows all of the classes representing windows that exist within the

GUIHARModule.

DefaultJFrame

HARMessageEditor

|

HARPropertiesDialog

SHAZAMPropertiesDialog

HARStoredMsgltemPropertiesDialog

4

AudioPushListener

Figure 61. Dialogs (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

java.awt.event.
KeyListener

3-90

ActionListener

java.awt.event.

11/20/00

3.8.1.1.1 AudioPushListener (Class)

This is called by one or more AudioPushConsumerlmpls when an audio clip is being
pushed.

3.8.1.1.2 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.8.1.1.3 HARMessageEditor (Class)

This dialog is used for creating a new HAR stored message, viewing or modifying an
existing HAR stored message, and setting the message while the HAR is in maintenance
mode.

3.8.1.1.4 HARPropertiesDialog (Class)

This dialog is used to view and edit the HAR’s configuration, and to view and edit the
current slot contents.

3.8.1.1.5 HARStoredMsgltemPropertiesDialog (Class)

This dialog is used for creating, viewing, or editing the properties of HARStoredMsgltem /
GUIHARStoredMsgltem objects.

3.8.1.1.6 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.8.1.1.7 java.awt.event. KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.8.1.1.8 SHAZAMPropertiesDialog (Class)

This dialog is used for viewing and editing the properties (configuration) of a SHAZAM.

R1B2 GUI Detailed Design Rev. 0 3-91 11/20/00

3.8.1.2 HARModuleArchitecture (Class Diagram)

This diagram shows the data hierarchy of the GUIHARModule and the objects it supports.
It does not contain the user interface relationships of these objects - those are contained in
the GUIHARModule:NavigatorSupport class diagram.

!

*
‘ GUIPlan L

‘ GUIMessagelLibrary

‘ StoredMessage

.

*

GUIHARStoredMessage

doProperties()
setMessage|
getMessageContent()

-

discoverEventChannels(trader, eventConsumerGroup)
discoverObjects(trader, dataModel)

loggedin()

loggedOut()

shutdown(orb)

handleCommand(actionEvent, Menuable[]) : boolean

getMenultemReps(accessToken, Menuable[]) : MenultemRep[]

SHAZAMNav Group
HARNavGroup . §
1 createSHAZAM() 1 GUITrafficEventHolder
1
createHAR()
SHAZAM
1
1
1 *
Chart2HAR GUISHAZAM ResponsePlanitem
1 1
1
1 . doProperties()
setConfiguration (GUIHARResponsePlanitem
SHAZAMConfiguration, P
GUIHAR SHAZAMFactory)
remove
" execute
doProperties() i
setConfiguration(GUIHARMessageNotifier
HARConfiguration, 0..1*
HARFactory) k>—1
getConfiguration() 3
getSlotUsage() setAssociatedHAR(har)
setMessage() getAssociatedHAR() : GUHAR
storeSlotMessage() isHARNoticeActive() : boolean
deleteSlotMessage() getNotifier() : HARMessageNotifier
addMsgNotifier(notifier) *
removeMsgNotifier(notifier) *
getMsgNotifiers()
ResponseDataCreator (
InstallableModule
startup(orb)

PlanitemCreationSupporter

A

GUIHARModule

getPlantemCreationMenuReps(accessToken) : MenultemRep[]
createGUIPlanitem(planitem, itemID, plan) : GUIPlanitem
createNewGUIPlanltem(accessToken, menuString, plan) : boolean

get() : GUHARModule

getHARFactories() : HARFactory(]
getSHAZAMFactories() : SHAZAMFactory[]
convertTextToSpeech(AudioPushListener, String) : void
createTextClip(String text) : HARMessageTextClip

| createAudioDataClip(byte[]) : HARMessageAudioDataClip

GUILibrarySupporter

createGUIStoredMessage(StoredMessage, Message) : GUIStoredMessage

getStoredVk

reationMenuReps(acce:

Token) : MenultemRep[]
createNewGUIStoredMessage(access Token, menuString, guiLibrary) : boolean
createLibraryType():LibraryType

CosEvent.
PushConsumer

push

GUIResponsePlanltemCreator

createGUIResponsePlanitem(ldentifier, name,
ResponsePlanitemData) : GUIResponsePlanitem

createGUIResponsePlanitem(ResponsePlanitem) :
GUIResponsePlanitem

Figure 62. HARModuleArchitecture (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

3-92

11/20/00

3.8.1.2.1 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

38.1.22 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.8.1.2.3 GUIHAR (Class)

This class provides a GUI “wrapper” object that is used to wrap the CHART2HAR
CORBA interface and to supply GUI-specific functionality.

3.8.1.24 GUIHARModule (Class)

The GUIHARMOodule is an installable module in the GUI, and provides all functionality
specific to HAR and SHAZAM control. It requires that the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule all be installed in order to be fully
functional. If any of the other modules is not available, the functionality provided by that
module will not be available. For example, if the GUILibraryModule is not installed, the
user will not be able to create or utilize HAR library messages. Only one GUIHARModule
object may exist within the GUI. This class implements the interfaces to support the
frameworks of the GUIPlanModule, the GUILibraryModule, and the
GUITrafficEventModule.

3.8.1.25 GUIHARResponsePlanltem (Class)

This class provides a GUI “wrapper” object that is used to wrap a ResponsePlanltem
CORBA interface that contains HAR-specific data and to supply GUI-specific
functionality.

3.8.1.2.6 GUIHARStoredMessage (Class)

This class provides a GUI “wrapper” object that is used to wrap a StoredMessage CORBA
interface that contains HAR-specific data and to supply GUI-specific functionality.

R1B2 GUI Detailed Design Rev. 0 3-93 11/20/00

3.8.1.2.7 GUIHARStoredMsgltem (Class)

This class provides a GUI “wrapper” object that is used to wrap the HARStoredMsgltem
CORBA interface and to supply GUI-specific functionality.

3.8.1.2.8 GUIPIan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data
locally for faster access, as well as to give the Plan some GUI-specific functionality such as
menus and command handling.

3.8.1.2.9 GUIPIanltem (Class)

This is a GUI base class for all the plan items. Each GIUPlanltem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

3.8.1.2.10 GUITrafficEventHolder (Class)

This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.8.1.2.11 GUIResponsePlanltem (Class)

This is a base class for the GUI wrapper object that is used to wrap a ResponsePlanitem.
The ResponsePlanltem represents a proposed action to perform on a target object in
response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the
response plan item.

3.8.1.2.12 GUIStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object. It
provides a user interface object which can implement whatever interfaces are necessary for
the object to exist within the GUI framework (for example, an object must support the
NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.8.1.2.13 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description, which are used to allow the user to
organize messages.

R1B2 GUI Detailed Design Rev. 0 3-94 11/20/00

3.8.1.2.14 PlanltemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module.
The modules must attach their PlanltemCreationSupporters at startup. The GUIPlanModule
will then call the supporter when it is time to display the Plan menu or to create a specific
type of plan item or GUIPlanltem.

3.8.1.2.15 GUIHARMessageNotifier (Class)

This interface is similar to the HARMessageNotifier interface in that it is implemented by
all of the message notifier classes, but this interface is specific to the GUIHARModule and
its usage of the GUI wrapper objects.

3.8.1.2.16 ResponseDataCreator (Class)

This interface enables the creation of type-specific ResponsePlanltemData objects, which
are used for creating the appropriate type of ResponsePlanltem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

3.8.1.2.17 Chart2HAR (Class)

The Chart2HAR class is an extension of the HAR that is aware of Chart2 business rules,
such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.8.1.2.18 GUIMessageL.ibrary (Class)

This class is a GUI “wrapper” object that is used to wrap a MessageL.ibrary object. The
wrapping is done to cache the data locally for faster access, as well as to give the
MessageL.ibrary some GUI-specific functionality such as menus and command handling.

3.8.1.2.19 GUISHAZAM (Class)

This class is a GUI wrapper object that is used to wrap a SHAZAM CORBA interface and
to provide GUI-specific functionality.

3.8.1.2.20 HARFactory (Class)
This CORBA interface allows new HAR objects to be added to the system.

3.8.1.2.21 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

R1B2 GUI Detailed Design Rev. 0 3-95 11/20/00

3.8.1.2.22 GUILibrarySupporter (Class)

This class allows the GUILibraryModule to maintain stored messages that have differing
formats. When an object of this type is installed the user can create, maintain, and use the
specific type of libraries and stored messages that the object supports.

3.8.1.2.23 HARNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUIHAR objects in the module when they are displayed in the Navigator.

3.8.1.2.24 HARStoredMsgltem (Class)

This class provides a means for associating a HAR message with a HAR for use in
responding to a traffic event. A directional indicator is stored to specify the SHAZAMs to
activate (by default) when the message is activated on the specified HAR.

3.8.1.2.25 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.8.1.2.26 ResponsePlanltem (Class)

Objects of this type can be executed as part of a traffic event response plan. A
ResponsePlanltem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.8.1.2.27 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

3.8.1.2.28 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

R1B2 GUI Detailed Design Rev. 0 3-96 11/20/00

3.8.1.2.29 GUIResponsePlanltemCreator (Class)

This interface is used to enable the creation of specific types of GUIResponsePlanltem
wrapper objects depending upon which type of ResponsePlanitem is being wrapped. Any
class wishing to create GUIResponsePlanltems must implement this interface and add
themselves to the GUITrafficEventModule at GUI startup time. When the
GUITrafficEventModule discovers a ResponsePlanltem or catches a CORBA event
indicating that a new response plan item has been created, it will call each known
GUIResponsePlanltemCreator to give it an opportunity to create a specific type of GUI
wrapper object.

3.8.1.2.30 SHAZAMFactory (Class)
This CORBA interface allows new SHAZAM objects to be added to the system.

3.8.1.2.31 SHAZAMNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUISHAZAM objects in the module when they are displayed in the Navigator.

R1B2 GUI Detailed Design Rev. 0 3-97 11/20/00

3.8.1.3 NavigatorSupport (Class Diagram)

This diagram shows the user interface relationships of the objects supported by the
GUIHARModule.

Navigable

getimage()
getDesc()
allowSetDesc()
setDesc()

java.awt.event.ActionListener

/\
NavTreeDisplayable NavListDisplayable
Menuable
getNavParent() : NavTreeDisplayable . St
t ! N > o getPropertyValue(property) : String
gg{'&'ﬁgﬁﬂg’:ﬁggg@iﬁgj‘ég&gﬁ) : boolean comparePropertyValues(property, vall, val2) : int getMSMenultemReps(accessToken, Component invoker) : Menultem Rep[]
getNavPropertyList() : String [getSSMenultemReps(accessToken, Component invoker) : MenultemRep[]

7 © VI AR

‘ GUIHARStoredMessage

‘ GUIHARStoredMsgltem

HARNavGroup CUMHAR SHAZAMNavGroup b GUISHAZAM ‘ ‘ GUIHARR: lanitem

Figure 63. NavigatorSupport (Class Diagram)

3.8.1.3.1 GUIHAR (Class)

This class provides a GUI “wrapper” object that is used to wrap the CHART2HAR
CORBA interface and to supply GUI-specific functionality.

3.8.1.3.2 GUIHARResponsePlanltem (Class)

This class provides a GUI “wrapper” object that is used to wrap a ResponsePlanltem
CORBA interface that contains HAR-specific data and to supply GUI-specific
functionality.

R1B2 GUI Detailed Design Rev. 0 3-98

11/20/00

3.8.1.3.3 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.8.1.3.4 GUIHARStoredMessage (Class)

This class provides a GUI “wrapper” object that is used to wrap a StoredMessage CORBA
interface that contains HAR-specific data and to supply GUI-specific functionality.

3.8.1.3.5 GUIHARStoredMsgltem (Class)

This class provides a GUI “wrapper” object that is used to wrap the HARStoredMsgltem
CORBA interface and to supply GUI-specific functionality.

3.8.1.3.6 GUISHAZAM (Class)

This class is a GUI wrapper object that is used to wrap a SHAZAM CORBA interface and
to provide GUI-specific functionality.

3.8.1.3.7 HARNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUIHAR objects in the module when they are displayed in the Navigator.

3.8.1.3.8 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu
items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.8.1.3.9 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the
left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

R1B2 GUI Detailed Design Rev. 0 3-99 11/20/00

3.8.1.3.10 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.8.1.3.11 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.8.1.3.12 SHAZAMNavGroup (Class)

This class has one instance in the GUIHARModule. It serves as a container for all of the
GUISHAZAM objects in the module when they are displayed in the Navigator.

3.8.1.3.13 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

R1B2 GUI Detailed Design Rev. 0 3-100 11/20/00

3.8.2 Sequence Diagrams

3.8.2.1 GUIHARModule:AddHAR (Sequence Diagram)

This diagram shows how a HAR is added to the system. The user right clicks on the
HARNavGroup in the Navigator and clicks “Add HAR”. The HARNavGroup then creates
a temporary GUIHAR wrapper object and calls it to display its properties, which invokes
the HAR Properties dialog. When the user clicks OK, the dialog calls the GUIHAR to set
the configuration. The GUIHAR wrapper object does not contain a served CHART2HAR
object, so it calls the HARFactory to create one. If a new CHART2HAR is successfully
created, the server will push out an event and the GUI will create a new GUIHAR object to
wrap it. The temporary GUIHAR object will be deleted.

o
HARNavGroup ‘

Administrator HARFactor CommandStatusHandler GUIHARModule

The menu tem will be L, F*Add HAR"
grayed out if the user T b—menu item clicked}
does not have rights. actionPerformed

cu ‘

——create GUIHAR
gett
[*foreachfactory] i

how getName

[cancel]
indow

i<—setConfiguration—

[no factory selected]
et

[no factory selected]
getHARFactories

[no factory found]____ s}
GUIException

——
[No factory found]
"Display Error"

[factory not found}

get fandler

! create CommandStatus
’7 createHAR:
[no rights]
no factory selected i
[C[ORBA Comm fauur]e] AccessDenied .| Ifsuccesstul,
[* for next factory] [other error] ™ aHARAdded event will be
CHART2Exception pushed by the server.

[error]
GUIException

[error]
"Disp\ay Error*

[error}

closeWindow
=

| This temporary GUIHAR object
will be deleted. When the
HARAdded event is received from
the server (or when the HAR is
discovered during the next
discovery cycle), the "real" GUIHAR
object will be added to the GUI's
del.

Figure 64. GUIHARModule:AddHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-101 11/20/00

3.8.2.2 GUIHARModule:AddHARStoredMessageltem (Sequence Diagram)

This diagram shows how a Planltem is added to the system. The user clicks on the GUIPIan
object in the Navigator and chooses “Create HAR Plan Item”. The GUIPlan then calls the
PlanltemCreationSupporters (of which the GUIHARModule is one) to create the
GUIPlanltem, and the GUIHARModule recognizes the menu item string. The module
creates a temporary GUI wrapper for a plan item and calls it to display its properties, which
invokes the HARStoredMsgltemPropertiesDialog. When the user clicks Apply or OK, the
dialog calls back to the GUIHARStoredMsgltem wrapper object to set the item data. Since
the wrapper contains no served Planltem, it calls the CHART2HAR to create one. If
successful, the server will push a PlanltemAdded event to all GUIs, which the GUI will
catch to create a new GUIHARStoredMsgltem wrapper object (the temporary wrapper will
be deleted).

GUIPlan
Operator =Han GUIHARModule This dialog will allow cul DataModel CHART2HAR Plan
the user to select

aHAR and a Stored Message
['Create Plan ftem" to play on it when the item
tivated.
|—menu item clicked]—} s activate
i actionPerformed i—createNewGUIPlanitem—>}
This menu item 7crealg% GUIHARStoredMsgltem
will be disabled if
the user does not X
have sufficient rights. pe
i-creats HARStoredMsgitemProperties Dialog
get
-getDataModel
getObjectsOfType.
(GUHAR) |
getObjectsOfType.
(GUIHARSo!
hoy
tionPerfc
[Cancel}
setMsgltem Data—}
i 7| HARPlantemData
HAR:
\\\\\\\\\\\\
getP!
-additem
[no rights]
AccessDenied
[other error]
CHART2Exception
[error]
GUIException
[error]
_Display Error
[error]
The window is
left open to allow /
.| the user to create
muttiple plan items This temporary GUIHARStoredMsgltem object
in succession will be deleted. When the
| dded event is pushed,
>< ,,,,,,,,,, - the GUIPlanModule will catch it and
TT— ask the PlanitemCreationSupporters
T to create a GUIPlanitem. The |
GuUI

Module will then create a
- GUIHARStoredMsgitem and add it into the
DataModel.

Figure 65. GUIHARModule:AddHARStoredMessageltem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-102 11/20/00

3.8.2.3 GUIHARModule:AddSHAZAM (Sequence Diagram)

This diagram shows how a SHAZAM is added to the system. The user right clicks on the
SHAZAMNavGroup object in the Navigator and clicks “Add SHAZAM”. The
SHAZAMNavGroup then creates a temporary GUISHAZAM wrapper object and calls it to
display its properties, which invokes the SHAZAM Properties dialog. When the user clicks
OK, the dialog calls the GUISHAZAM to set the configuration. The GUISHAZAM
wrapper object does not contain a served SHAZAM object, so it calls the SHAZAMFactory
to create one. If a new SHAZAM is successfully created, the server will push out an event
and the GUI will create a new GUISHAZAM object to wrap it. The temporary
GUISHAZAM object will be deleted.

SHAZAMNavGroup - :
The menu item will SHAZAME ‘ cul
i _-{ be disabled if the user actory GuUI CommandStatusHandler
Administrator " | does not have rights. GUIHARModule
['Add SHAZAM' L.
[—menu item clicked]—=>
actionPerformed
——creat GUISHAZAM
— || SHAZAVPropertiesDialog
——doProperties
create——>1 get
FgetSHAZAMFactories—
i_[*for each factory]
getName —
how
actionPerformed
[cancel]
closeWindow
[cancel]
<—setConfiguration—i

[no factory selected]
get

[no factory selected]

getSHAZAMFactories

___[no factory found]
GUIException

——
[No factory found]
"Display Error"

[factory not found]

t
getToken
getCommandStatusHandler

createCommandStatu:

vl ﬂ
ommandStatus
[no factory selected] [no rights] “.| Fsuccessful ﬁ

[CORBA comm error] AccessDenied ™ a SHAZAMAdded event will be

[* for next factory] [other error] pushed by the server.
CHART2Exception

[error]
GUIException —
error

[error]
"Displa}/ Error"

[error}

closeWindow
<1

| This temporary GUISHAZAM object
will be deleted. When the
SHAZAMAdded event is received from
the server (or when the HAR is
discovered during the next
discovery cycle), the "real" GUISHAZAM
object will be added to the GUI's
DataModel.

Figure 66. GUIHARModule:AddSHAZAM (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-103 11/20/00

3.8.2.4 GUIHARModule:AssociateMessageNotifier (Sequence Diagram)

This diagram shows how a HAR message notifier (SHAZAM or DMS) is associated with a
HAR. The administrator drags the GUIHARMessageNotifier object over the GUIHAR
object in the Navigator. The drop will be rejected if the HARNOotifier is active. When the
object is dropped onto the GUIHAR, the GUIHAR wrapper calls the CHART2HAR server
object to add the message notifier. If successful, the server will push an event and the GUI
will catch the event and associate the GUIHAR wrapper object with the
GUIHARMessageNatifier.

£

GUIHAR ‘ GUIHARMessageNotifier CHART2HAR ‘ GuI CommandStatusHandler
Administrator
[GUIHARMes sageNotifier
object dragged over
GUIHAR object]
allowDrop
[no rights]
"Reject Drag Operation"
—isHARNoticeActive—>}
R [HAR notifier active] __________:
"Reject Drag Operation”
[<—----"Accept Drag Operation'-------
[GUIHARMessageNotifier
object dropped
on the GUIHAR object]
handleDrop
[no rights]
"Reject Drop Operation” get
———————getCommandStatusHandler
createCommandStatu ——create CommandStatusimpl
getToken
“ddMSg;Nom'b' B . If successful, the server will push a
[no n hts] HARConfigurationChanged event,
Access%enied T and the GUI will catch the event
: and associate the GUIHAR with
e [notifier currently active] | the GUIMessageNotifier.
HARMessageNotifierActive H
[error] i
. [error] . completed (failure reason)
"Reject Drop Operation” i
completed (Success,j
f<-----"Accept Drop Operation"----- ;

Figure 67. GUIHARModule:AssociateMessageNotifier (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-104 11/20/00

3.8.2.5 GUIHARModule:BlankHAR (Sequence Diagram)

This diagram shows how a HAR is blanked when it is online. To blank the HAR, the
response item must be removed from the event or the event must be closed. This may be
done by right clicking on the GUIHARResponsePlanltem or on the GUITrafficEvent
objects, respectively, and choosing the appropriate menu item. Either way, the remove
method of the GUIHARResponsePlanltem wrapper object will be called, which will in turn
call the served ResponsePlanltem object which it wraps. If successful, the server will push
events to all GUIs indicating the changed status.

X

Operator

GUIHARResponsePlanitem

ResponsePlanitem

[removes response
item from event or
closes event]

(o]
c

CommandStatusHandler

remove

get

getToken

——getCommandStatusHandler————>
create!

remove
[no rights]

AccessDenied
[not online]

CommandStatus

CHART2EXxception
[HAR in use by a

no override rights]
ResourceControlConflict

If successful, this

| will cause the server to

push a HARStatusChanged,
ControllingOpCtrChanged,
ResponsePlanStatusChanged,
and SHAZAMStatusChanged or
DMSStatusChanged events.

completed (success or failure reason)

create

CommandsStatusimpl

Figure 68. GUIHARModule:BlankHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-105

11/20/00

3.8.2.6 GUIHARModule:BlankHARInMaintenanceMode (Sequence Diagram)

o

N

Administrator

This diagram shows how a HAR is blanked when it is in maintenance mode. The user right
clicks on the GUIHAR object and chooses the “Blank” menu item. The GUIHAR object
creates a CommandStatus and then calls the CHART2HAR served object which the
GUIHAR wraps. If successful, the server will push events indicating the changed status.

‘ GUIHAR ‘

CHART2HAR ‘ ‘

(o]
=

CommandStatusHandler

actionPerformed

|__[clicks on "Blank" menu item]__s}

get

This menu item will be

disabled if the user does not
have rights or if the device is
not in maintenance mode.

:

getToken
getCommandsStatusHandler

createCommandStatu

blank

<"[in maintenance mode]._

CHART2Exception
[no rights]

AccessDenied

[HAR controlled by
... different op ctr and,
no override rights]

ResourceControlConflict

may also push
ControllingOpCi

™ If successtul, this will push a
HARStatusChanged event.
If the HAR was in use, it

a
trChanged evel

|

creat Commandstatus

The server will update

the CommandStatus

to show the progress

or failure of the command.

Figure 69. GUIHARModule:BlankHARInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-106

11/20/00

3.8.2.7 GUIHARModule:CreateHARStoredMessage (Sequence Diagram)

This diagram shows how a HAR stored message is created. First, the user right clicks on the
GUIMessageL.ibrary object, which calls the GUILibraryModule to get the installed message
creators. Each message creator returns menu items for message types that it can create.
When the user clicks on the appropriate message type, the GUIMessageL.ibrary object is
called again, and this time it asks each message creator to create the correct type of message
based on the menu item. The GUIHARModule creates a temporary
GUIHARStoredMessage object to edit, and calls doProperties to show the
HARMessageEditor dialog. As the user types, any banned words will be shown to the user.
When the user clicks OK, the non-approved words will be displayed to the user. Once the
results of the approved words check are accepted by the user, the message editor will create
a new HARMessage object and will call setMessage on the GUIHARStoredMessage
wrapper object. Since the wrapper does not contain a served StoredMessage object, it calls
the message library to create one. If successful, the server will create a new StoredMessage
object and will push an event to update all of the GUIs.

R1B2 GUI Detailed Design Rev. 0 3-107 11/20/00

GuUlLibrary
% NavTree cul Gl ibrary | | GUILibraryModule ‘Supporter GUIHARModule Messagelibrary || GUIDictionan
Operator
| [right click] S
mousePressed [right click] N
PS> get
FgetLibrarySupporters=

i____[*for each GUILibrarySupporter]
getStoredMessageCreation MenuRleps%

M Pl

[user clicks on "New

HAR Stored Message'—————>}

actionPerformed

g
FgetLibrarySupporters=

[* for each library supporter
————until the GUHARModule}|———>}
ci reateNewGUISlpredMessage

false
A 1
[create> GUIHARStoredMessage
——doProperties
—create HARMessageEditor
how
true
[types text for
keyPressed Nord:
i __[banned words]
— WordList
"Display
Banned Words'
[cancel clicked]
actionPerformed I
i closeWindow
; <
[OK clicked]

actionPerformed

performApprovedWords Check—————>}

_[non-approved words]__
WordList

The suggested words will probably be
displayed in a separate dialog similar
aspell check dialog, but that is left for|

8
1

Display Suggestions" returns
words} suggested words

[—create % HARMessage

—setHeader—2|
setBody——=

The HARMessageClip
objects must be created first.

setTrailer This is not shown here due
-| to space limitations.
get 0
getToken——
i___[no rights] .
| AccessDenied If successful, the
[bad message content] server will push a
Di; ontent StoredMessageAdded
i event
{__[other error]
CHART2Exception
[error]
GUIException BN (=)

GUIExcepti
[error]
"Display Error"

[error}

.
closeWindow
<~

This temporary GUIHARStoredMessage »
object will be deleted. When the server >< ><
pushes the StoredMessageAdded event,

the GUILibraryModule will catch the event

and ask all of the GUIStoredMessageCreator

objects to create a new GUIStoredMessage.

When one does, the GUILibraryModule will

add the GUIStoredMessage to the DataModel.

Figure 70. GUIHARModule:CreateHARStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-108 11/20/00

3.8.2.8 GUIHARModule:CreateResponsePlanltem (Sequence Diagram)

This diagram shows how a HAR response plan item is added to the system. The user drags
a GUIHAR or a GUIPlanltem object over the GUITrafficEventHolder (the object
representing the traffic event in the GUI) and drops it. Since the GUIHAR and
GUIHARMsgltem objects both implement the ResponseDataCreator interface, the
GUITrafficEventModule uses either of these to create a HARResponsePlanltemData, which
it then uses to create a ResponsePlanltem. See the sequence diagram:
GUITrafficEventModule: AddResponsePlanltem for details.

The dragging of GUIHAR and GUIHAR StoredMessageltem objects to a
GUITrafficEventHolder to create a response plan item is described in the
sequence diagram: GUITrafficEventModule:AddResponsePlanitem. Both
the GUIHAR and the GUIHARStoredMessageltem serve as
ResponseDataCreators (an interface which they implement).

Figure 171. GUIHARModule:CreateResponsePlanitem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-109 11/20/00

3.8.2.9 GUIHARModule:DeleteHARMessageFromController (Sequence Diagram)

This diagram shows how a message is deleted from a HAR controller’s slot. The
administrator does this from the HAR Properties Dialog, and clicks on the “Delete” button
when viewing the slot contents. The dialog calls the GUIHAR wrapper object to delete the
message, which in turn calls the CHART2HAR object that it wraps (after creating a
CommandStatus object).

o

A

Administrator

HARPropertiesDialog

‘ cul ‘ GUHAR CHARTZ2HAR | |

[clicks on "Delete Message'].
actionPerformed >

[——creat CommandStatus

ﬁ

[no rights] e
accessDenied

If successful, this will push
push a HARStatusChanged
message

i....[notin mode]__.
CHART2Exception

[HAR under control of
[error] I<-=another op ctr and no rights}-—-
GUIException ResourceControlConflict

1
ferror]
“Display Error"

The server will
update the -
CommandStatus
object to show the
progress or failure

of the command,

Figure 72. GUIHARModule:DeleteHARMessageFromController
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-110 11/20/00

3.8.2.10 GUIHARModule:Discovery (Sequence Diagram)

This diagram shows the event channel and object discovery, which is done after startup and
periodically thereafter. In event channel discovery, the module queries the event channels
from the trading service and creates a PushConsumer to receive the CORBA events, then
adds each to the EventConsumerGroup for maintenance of the event channel. In object
discovery, the HAR module looks for any HARFactory objects in the trader, and asks for
all of the HARs served by each factory. A GUIHAR wrapper object is created and added to
the DataModel, and the GUIHARMessageNotifiers are associated to the HAR (if the
message notifiers are already in the DataModel). The HAR module then gets the
SHAZAMPFactory objects from the trader and gets all of the SHAZAM objects served by
each factory. Then it associates the GUISHAZAM objects with the GUIHAR objects (if
appropriate and the GUIHAR object is in the DataModel). The HAR module also queries
the TTSConverter objects from the trader, to call when text-to-speech conversion is
required.

CosTrading

GUI

Discovery GUIHARModule Lookup
Thread

Event
GUHAR Consumer
DataModel HARFacton CHART2HAR || SHAZAMFactor, [ifi ssageNot SHAZAM Group TTSConverter
query
i__(HAR and
SHAZAM — =

event channels)

[h PushEvent

" for eac At Consumer

v chaone D
found]
add
| dscoverObiects—>] The processing of the discovered objects will actually be done on
discoverObjects: query i I——— another thread after they are queried from the trader, to avoid
—(HARFactory — e tying up the discovery thread in case there are delays such as CORBA
ODJECS) ... comm errors. This other thread is not shown here due to space hmmanons but

it would first process the CHART2HAR objects, then the SHAZAM obje

>

getl
-getObject
[not foun
[for each oreae " /‘ curR
yi
[*for each
HAR

AR]| e Any GUIDMS associated with a HAF

contained in HAR] | is in the DataModel when the DMS:
[GUIF fier exists] T s c;iplsgé)‘\c/'ered‘ similar to the SHAZA!

HARMessageNotifier getObject———34 | e as amessage notifier if the GUIHAR

[* for each getiD et will have to add itseff to the GUIHAR T

-~ query (
SHAZAMFactory =
objects)
—
getlD
‘getob
[not found]
reate GUISHAZAM
[* for each [GUISHAZAM created]
SHAZAMA Faclory] getAssociatedHAR
[* for each [GUISHAZAM created and
SHAZAM] 2z 2
gel D
[GUISHAZAM created and
HAR is associated|——>
jetObject
[GUIHAR found]
‘addMsgNotifier

query(
ETTSConverter—t
objects)
[* for each TTSConverter until one returns
getSupportedFormats

Figure 73. Discovery:Basic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-111 11/20/00

3.8.2.11 GUIHARModule:ListenToAudioClip (Sequence Diagram)

This diagram shows how an audio clip is played from the GUI. The user clicks on the play
button in the message editor or HAR properties dialog, and the dialog creates an

AudioPushConsumerimpl, activates the object via the CORBA POA, and calls the

HARMessageAudioClip to stream the message. The server will then call the
AudioPushConsumerimpl to report the format of the audio and to stream the chunks of
data. The AudioPushConsumerImpl will call the dialog, as it implements the
AudioPushListener interface. The dialog will open, write to, and close the SourceDataL.ine
that represents the audio output.

Lox

Operator

This button will be L
disabled if a clip is
already being played

in the dialog.

System

[clicks on play button].
actionPerformed

HARMessageEditor
or
HARPropertiesDialog

HARMessage

AudioClip Gul

org.omg.PortableServer.
POA

javax.sound.sampled.
SourceDataLine

create

get

getPO,

-activate_object (AudioPushConsumerimpl

tream

—
[error]
“Display Error*

[error]
S AudioClipNotFound-------
or CHART2Exception

AudioPushConsumerimpl

This will be called on a different
thread by the server to report
the streamed data.

pushAudioPropertie:

The PushConsumerimpl will
actually use the invokeLater()
command in javax.SwingUtilities

to report the results on the AWT
eventthread. This is necessary to
.| avoid threading conflicts in the

g GUI components and/or the

pushAudioPropertie:

SZ— [line in use, invalid forma‘!‘ or other error]________
GUIException
——
[error]

-openAudioSourceDataL.in

SourceDataline.

[* for each
chunk of
audio data]

pushAudio-

pushAudio

get
[number of bytes streame‘d ==

total number of bytes}
closeAudioSourceDataline

clo:

[failure]

pushFailure

.
"DlspIaP/ Error*

pushFailur

get
closeAudioSourceDataline———————>

e

Figure 74. GUIHARModule:ListenToAudioClip (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-112

11/20/00

3.8.2.12 GUIHARModule:ListenToTextClip (Sequence Diagram)

This diagram shows how text is played as audio for the user for review. From the HAR
Message Editor or HAR Properties Dialog, the user would click on the “Play” button. If a
text clip is being played, the dialog would get the text from the clip. Then it would create an
AudioPushConsumerimpl to listen for the results, then call the GUIHARModule to convert
to text. The module would get the playback format stored in the system profile (or use the
default format if no playback format property is found), and call the TTSConverter to
convert the text to speech. The system would then call back to the
AudioPushConsumerImpl to stream the data. The AudioPushConsumerimpl would then
cause the AudioPushListener (i.e., the dialog) to be called on the main thread to report the

. or org.omg.PortableServer. javax.sound.sampled. .
HARP Dialog GUIHARModule TTSConverter Gul POA SourceDataLine GUIProfile
Operator System
[clicks on play button]
= actionPerformed >
get
This button will be L
; i text clip].
disabled if a clip is [
Siready being piayed ConvertTextToSpeech et
in the dialog.
format not -getProperty ("Audio playback format"y
... supported by the___
TTSConverter]
GUIException
[error]
"Display Error"
at AudioPush
Consumerimpl
get
getPOA
activate_object (AudioPushi
FconvertTextToSpeech}
[error]
<-—AudioClipNotFound-—
GUIlEerrorl or CHART2Exception The PushConsumerimpl will
xception actually use the invokeLater()
[error] command in javax.SwingUtilities
“Display Error" to report the results on the AWT
iDisplay A eventthread. This is necessary to
. avoid threading conflicts in the
GUI components and/or the
SourceDataLine.
P pe 7
P pert
D rceDatal in
o i ~—openr
This will be called on a different L i lline in use, invalid format, or other error]
thread by the server to report GUIException
the streamed data. —
[error]
"Display Error"
pushAudic
pushAudi
[* for each get
chunk of [number of bytes streamed ==
audio data] total number of bytes}
closeAudioSourceDataLine Close;
[failure]
pushFailure
“Display Error”
get
clos ?Huuiu ourceDataL ine

Figure 75. GUIHARModule:ListenToTextClip (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-113 11/20/00

3.8.2.13 Login:Basic (Sequence Diagram)

This diagram shows what happens during login. The GUI calls each InstallableModule’s
loggedIn() method, but the GUIHARModule does not do any work at login.

o

GUIHARModule

@
c

User
"Login"
or
"Change User"

loggedin———=> Currently the module
does not perform any
work on login.

Figure 76. Login:Basic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-114 11/20/00

3.8.2.14 GUIHARModule:Logout (Sequence Diagram)

This diagram shows what happens when the user logs out. The GUI calls all of the
InstallableModule objects’ loggedOut() methods, but the GUIHARModule currently does
nothing during logout.

O
1 GUI GUIHARModule
User
"Logout"
or
"Change User" loggedOut N The module currently

does not perform
any work at logout.

Figure 77. GUIHARModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-115 11/20/00

3.8.2.15 GUIHARModule:ModifyHARSettings (Sequence Diagram)

This diagram shows how the HAR settings are modified. The user right clicks on the
GUIHAR object in the Navigator and clicks on the “Properties” menu item. The GUIHAR
object then creates a HARPropertiesDialog, which calls back to the GUIHAR to get the
configuration and slot usage to initialize itself with. The GUIHAR wrapper object then calls
the CHART2HAR object in the server to get this information. After the administrator is
done editing the configuration, clicking on the “OK” button will cause the dialog to call the
GUIHAR object’s setConfiguration() method. The GUIHAR will create a CommandStatus
object and will call the CHART2HAR that it wraps to set the configuration. If successful,
the server will push a CORBA event indicating that the configuration has changed.

R1B2 GUI Detailed Design Rev. 0 3-116 11/20/00

X

‘ CHART2HAR ‘ ‘ Ul

CommandStatusHandler

7 GUIHAR
Administrator
[clicks on "HAR Properties"
menu item]
“.actionPerformed
——create
i<——getConfiguration:]
getConfiguration
[no rights]
AccessDenied
The menu item will be [other error]
grayed out if the user CHART2Exception
does not have rights or
if the HAR is not in
maintenance mode. [error]
GUIException S,
[error]
“Display Error"
<—getSlotUsage—

[status not cached] PN

| see the ViewHARSIotUsage

ferr

storeSlotMessage

< [* for each changed slot message] - -

getStatus sequence diagram for more
[no rights] details.
AccessDenied
[other error]
CHART2Exception
[error]
GUIException —
[error]
"Display Error"
how
actionPerformed
[cancel}
create
i<—setConfiguration
get
getCommandStatusHandler
createCommandStatu:
—create=> CommandStatus
getToken
etConfiguration
e _..[not in maintenance mode].______.
T2Exception
AC[HO ”%ms} g ~| If successful, a [
[error]_ | ceessenie HARConfigurationChanged
GUIException event will be pushed by the server
ferror] and caught by the GUI.
“Display Error"

7‘ HARConfiguration

The server will update
the CommandStatus
object to show the
progress or failure of
the command.

iagram for details.

get
getCommandStatusHandler

There may also be messages to delete

from the slots (very similar to storeSlotMessage())

but deleteSlotMessage() is not shown here due to

space limitations. See the DeleteHARMessageFromController

createCommandStatu:

create-

getToken

toreSlotMessage-
[no rights]
AccessDenied

e [disapproved message content]
DisapprovedMessageContent

[other error]

CHART2Exception
[error]

GUIException

[error]
"Display Error"

ferr

closeW Indow

X

If successful, a
HARStatusChanged event will
be pushed by the server.

Figure 78. GUIHARModule:ModifyHARSettings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-117

11/20/00

3.8.2.16 GUIHARModule:ModifyHARStoredMessage (Sequence Diagram)

This diagram shows how the contents of a stored message are modified. The user clicks on
an existing GUIHARStoredMessage object in the Navigator, and clicks on the “Properties”
menu item. The GUIHARStoredMessage then invokes the HARMessageEditor dialog. On
initialization, the dialog calls back to the GUIHARStoredMessage wrapper object to get the
message content, which calls back to the StoredMessage object in the server if the message
is not already cached in the wrapper object. When the HARMessage is returned, the dialog
can be initialized from the existing message contents. As the user types in text for the
message, the banned words will be displayed. When the user clicks “OK?”, the dialog first
checks the non-approved words and displays them, or if all words are approved, it calls the
GUIHARModule to create the audio or text clips for the header, body, and trailer of the
message. These clips are then set into the HARMessage, and the dialog calls the
GUIHARStoredMessage to set the message, which in turn calls the StoredMessage object
in the server. If successful, the server will push a CORBA event to update the GUISs.

‘ GUNDictionary

; : GUHARStoredMessage
Operator

StoredMessage ‘ HARMessage cul GUHARModule
[clicks on
“Properties'] N ;
i, actionPerformed —create HARMessageEditor g
\ The user may also listen to the

T contents of the message.

i See the ListenToHARMessage
gged g‘:b';g;ﬁr{;‘ gﬂ” K<—getMessageContent—; sequence diagram for details.
user does not [message not cached]
have rights getMessage

- HARMessageContent—}
getHeac
getTrailer
“Initialize Dialog"
[types text for message]
keyPressed
[banned words]
String [|
"Display
anned Words”
[cancel clicked].
actionPerformed
] closeWindow
[cancel} These methods may return
h exceptions, which are not shown
[OK clicked] here due to space limitations.
actionPerformed e pp! eck If an exception is caught, the error
.[non-approved words].__..._...._._______| will be displayed in the dialog
I String [| and the dialog will remain open.
I S “Display
The suggested words may [IO .
be shown in a separate - Suagested Words
dialog similar to a spell checker, rds} ger
but this is left for implementation. [— faudio was recorded]_
[for header, body, createAudioDataClip(byte[))
and trailer] | [text was changed]
[I reate TextClip(string)
der
ody
iler
get
getTol
[no rights]
AccessDenied
P [contains banned words]._______|
DisapprovedMessageContent
[other error]
HART2Exception
error]
GUiException
If successful, the
okl server will push a
Display Error StoredMessageChanged
event
[error]
—
closeWindow
S —

Figure 79. GUIHARModule:ModifyHARStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-118 11/20/00

3.8.2.17 GUIHARModule:ModifySHAZAMSettings (Sequence Diagram)

This diagram shows how the SHAZAM settings are modified. The user right clicks on the
GUISHAZAM object in the Navigator and clicks on the “Properties” menu item. The
GUISHAZAM object then creates a SHAZAMPropertiesDialog, which calls back to the
GUISHAZAM to get the configuration and slot usage to initialize itself with. The
GUISHAZAM wrapper object then calls the SHAZAM object in the server to get this
information if it is not already cached. After the administrator is done editing the
configuration, clicking on the “OK” button will cause the dialog to call the GUISHAZAM
object’s setConfiguration() method. The GUISHAZAM will create a CommandStatus
object and will call the SHAZAM that it wraps to set the configuration. If successful, the
server will push a CORBA event indicating that the configuration has changed.

7 GUISHAZAM
Administrator
[clicks on "SHAZAM Properties”
——create SHAZAMPropertiesDialog

getConfiguration——

SHAZAM CommandStatusHandler

The menu item will be 1"
r

[configuration not already cached]
getCo

2
if the SHAZAM is in
maintenance mode.

[OK clicked] __
actionPerformed

/‘ SHAZAMConfiguration

o
-getToker 7creale% C

[not in y | a
CHART2Exception SHAZAMConﬂgurat&oEChanged
i ed by

The server will update
the tatu

event wil be pushy
the server and caught
by the GUI

[error]
GUIException

Figure 80. GUIHARModule:ModifySHAZAMSettings (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-119 11/20/00

3.8.2.18 GUIHARModule:PutHARInMaintenanceMode (Sequence Diagram)

This diagram shows how a HAR is put into maintenance mode. The Administrator right
clicks on a GUIHAR in the Navigator and clicks on the “Put In Maintenance Mode” menu
item. The GUIHAR creates a CommandStatus object to monitor the progress of the
command and calls the CHART2HAR object (which it wraps) to put it in maintenance
mode. If successful, the server will push a CORBA event indicating that the comm mode
has been changed.

Q
;: ‘ GUIHAR ‘ CHART2HAR ‘ ‘ GUI CommandStatusHandler
Administrator
[clicks on "Put In Maintenance
Mode" menu item} 7
actionPerformed /
get
getToken

getCommandStjatusHandler;

This menu item will be b createCommandsStatu
disabled if the user does not —Ccreat CommandStatus
have rights or if the device is putinMaintenanceMode~>;

e. ™

already in maintenance mod X . B

é,[m maintenance mode]_ If successful, this will push a

CHART2Exception HARStatusChanged event.

. If the HAR was in use, it may
[no rights] also push ControllingOpCtrChanged
AccessDenied and ResponsePlanltemStatusChanged
events. The GUIwill catch these events .| The server will

[HAR controlled by and will update the GUI wrapper update the CommandStatus
c...differentopctrand__ | | objects as needed, object to show the progress

no override rights] : or failure of the command.

ResourceControlConflict

Figure 81. GUIHARModule:PutHARInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-120 11/20/00

3.8.2.19 GUIHARModule:PutHARONIine (Sequence Diagram)

This diagram shows how a HAR is put online. The Administrator right clicks on a
GUIHAR in the Navigator and clicks on the “Put Online” menu item. The GUIHAR creates
a CommandStatus object to monitor the progress of the command and calls the
CHART2HAR object (which it wraps) to put it online. If successful, the server will push a
CORBA event indicating that the comm mode has been changed.

o

i GUIHAR CHART2HAR
Administrator

CommandStatusHandler

[0}
<

[clicks on "Put Online" menu item].;
actionPerformed

get

getToken

H getCommandStatusHandler——————>;
This menu item will be ﬁ F——————————createCommandStatus

disabled if the user does not —create—>1 CommandStatus

have rights or if the device is

putOnline—=>

already online. X R
[online] 1 If successful, this will push a
CHART2Exception HARStatusChanged event.
[no rights] The server will update
AccessDenied the CommandStatus
object to show the
[HAR controlled by progress or failure of the
<,,,,,different opctrand___ command.

no override rights]
ResourceControlConflic

Figure 82. GUIHARModule:PutHARONIine (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-121 11/20/00

3.8.2.20 GUIHARModule:PutSHAZAMInMaintenanceMode (Sequence Diagram)

This diagram shows how a SHAZAM is put into maintenance mode. The Administrator
right clicks on a GUISHAZAM object in the Navigator and clicks on the “Put In
Maintenance Mode” menu item. The GUISHAZAM creates a CommandStatus object to
monitor the progress of the command and calls the SHAZAM object (which it wraps) to put
it in maintenance mode. If successful, the server will push a CORBA event indicating that
the comm mode has been changed.

o

;t GUISHAZAM SHAZAM GUI CommandStatusHandler
Administrator

[clicks on "Put In Maintenance

Mode" menu item] 7

actionPerformed /

get
getTokerr
: getCommandStatusHandler
This menu item will be f————————createCommandStatu:
disabled if the user does not create CommandStatus
have rights or if the device is —putinMaintenanceMode~ -
already in maintenance mode. X .
i [in maintenance mode]. 1 If successful, this will push a
CHART2Exception SHAZAMStatusChanged
. event. If the SHAZAM was
[no rights] in use, it may also push a
AccessDenied ControllingOpCtrChanged event. -
The GUIwill catch these events “] The server will update
[SHAZAM controlled by and will update the GUI wrapper the CommandStatus
éWdifferent opctrand____ object as needed. object to show the
no override rights] } progress or failure of the
ResourceControlConflict i command.

Figure 83. GUIHARModule:PutSHAZAMInMaintenanceMode (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-122 11/20/00

3.8.2.21 GUIHARModule:PutSHAZAMOnline (Sequence Diagram)

This diagram shows how a SHAZAM is put online. The Administrator right clicks on a
GUISHAZAM obiject in the Navigator and clicks on the “Put Online” menu item. The
GUISHAZAM creates a CommandStatus object to monitor the progress of the command
and calls the SHAZAM object (which it wraps) to put it online. If successful, the server will
push a CORBA event indicating that the comm mode has been changed.

o

j: GUISHAZAM SHAZAM
Administrator

CommandStatusHandler

(9]
<

clicks on "Put Online" menu item] s
actionPerformed |

get

getToken

I getCommandStatusHandler———>}
This menu item will be [T b createCommandStatu

disabled if the user does not —create—>| CommandStatus

have rights or if the device is
already online.

putOnline-

[online]
CHART2Exception If successful,
the server will push a
[no rights] SHAZAMStatusChanged event. The server will update
AccessDenied the CommandStatus
object to show the
[SHAZAM controlled by progress or failure of the
__different op ctr and ____ command.

no override rights]
ResourceControlConflict;

Figure 84. GUIHARModule:PutSHAZAMOnline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-123 11/20/00

3.8.2.22 GUIHARModule:RemoveHAR (Sequence Diagram)

This diagram shows how a HAR is removed from the system. The Administrator right
clicks on a GUIHAR object in the Navigator and clicks on the “Remove HAR” menu item.
The GUIHAR creates a CommandStatus object to monitor the progress of the command
and calls the remove() method of the CHART2HAR object (which it wraps). If successful,
the server will push a CORBA event indicating that the HAR was removed.

f =]

Administrator

[clicks on the
[—"Remove HAR" menu item}>—>

CHART2HAR ‘ GuUI ‘

CommandStatusHandler

actionPerformed 7

ge

This menu item will

getT
getCommandS

en

tatusHandler

be disabled if the user
does not have rights.

[no rights]

AccessDenied

[device busy]

InvalidOperation

[another op center is controlling

---=--and no override rights}--------

ResourceControlConflict

createCommandStatu

i successful, the server will push

a HARRemoved event, and also
SHAZAMStatus Changed, 1
SHAZAMConfigurationChanged,

and HARConfigurationChanged events

if appropriate. The GUI will catch

these events and will remove the GUHAR
object from the DataModel i

and will update the GUISHAZAM object.

{create— commandStatus

™ The server will update
the CommandStatus
object to show the
progress or failure of the
command.

Figure 85. GUIHARModule:RemoveHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-124

11/20/00

3.8.2.23 GUIHARModule:RemoveSHAZAM (Sequence Diagram)

This diagram shows how a SHAZAM is removed from the system. The Administrator right
clicks on a GUISHAZAM object in the Navigator and clicks on the “Remove SHAZAM”
menu item. The GUISHAZAM creates a CommandStatus object to monitor the progress of
the command and calls the remove() method of the SHAZAM object (which it wraps). If
successful, the server will push a CORBA event indicating that the SHAZAM was

Administrator GUISHAZAM ‘ SHAN ‘ ‘ cu ‘ CommandStatusHandler
[clicks on the
| "Remove" menu itemj—>!
A actionPerformed get
This menu item will ngUKm,
be disabled if the user i
does not have the I~ —getCommandStatusHandler——————>!
correct rights. {
createCc

[no rights] If successful
accessDenied this will push a
SHAZAMRemoved event,
which will be caught by
the GUI and the |
GUISHAZAM will be removed
from the DataModel as well
as removed from any
associations with a HAR.

—create CommandStatus
remove >

| The server will update
the CommandStatus
object to show the
progress or failure of the
command.

Figure 86. GUIHARModule:RemoveSHAZAM (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-125 11/20/00

3.8.2.24 GUIHARModule:ResetHAR (Sequence Diagram)

This diagram shows how a HAR is reset in maintenance mode. The Administrator right
clicks on a GUIHAR object in the Navigator and clicks on the “Reset” menu item. The

GUIHAR creates a CommandStatus object to monitor the progress of the command and
calls the reset() method of the CHART2HAR object (which it wraps). If successful, the
server will push a CORBA event indicating the changes to the state of the HAR.

o)
i ‘ GUIHAR ‘ CHART2HAR GuUI CommandsStatusHandler
Administrator
clicks on "Reset" menu nem]e
actionPerformed
get
getToken

getCommandSljalusHandler;

This menu item will be ———————createCommandStatus—————>
disabled if the user does not creat CommandStatus
have rights or if the device is reset X

not in maintenance mode.

i< [in maintenance mode].
CHART2Exception If successful, this will push HARSxatusChanged
and SHAZAMSlatusChanged or
a

[no rights] DMSStatusChanged events.
AccessDenied events. If the HAR was in use, it may also push
ControllingOpCtrChanged event. the CommandStatus

; to show the progress
[HAR controlled by i or failure of the command.
éWdlfferem op ctr and____ 1
no override rights]

ResourceControlConflict;

The server wil update

Figure 87. GUIHARModule:ResetHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-126 11/20/00

3.8.2.25 GUIHARModule:SetHARMessage (Sequence Diagram)

This diagram shows how a HAR message is set. The Operator right clicks on a
GUIHARResponsePlanltem object and clicks on the “Execute” menu item. The
GUIHARResponsePlanltem calls the execute() method of the ResponsePlanltem object
(which it wraps). If successful, the server will push CORBA events indicating the changes
to the state of the HAR. The server will also push events to keep the GUIs updated with the
current status of the command.

@)
: : GUIHARResponsePlanitem ResponsePlanitem GUI
Operator
| [clicks on "Execute"] S
Y\ actionPerformed —
execute

P —
This menu item get
will be disabled if getToken
the user does not
have rights or if the ut
HAR is not online. SRS

[no rights]
AccessDenied
e [notonline] | If successful, this
CHART2Exception will cause the server to
; | push a HARStatusChanged event,
» d%ﬁé? Oups gt?ér?d and possibly SHAZAMStatusChanged,
no override rights] DMSStatusChanged,
ResourceControlConflict ControllingOpCtrChanged, or
ResponsePlanStatusChanged
_______________ [banned words] | events.
DisapprovedMessageContent
The server will update the
ResponsePlanitem, which

is also a CommandStatus.
The server will also cause a
ResponsePlantatusChanged
event to be pushed.

Figure 88. GUIHARModule:SetHARMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-127 11/20/00

3.8.2.26 GUIHARModule:SetHARMessagelnMaintenanceMode (Sequence Diagram)

This shows how a message is set on a HAR when it is in maintenance mode. The user
clicks on the GUIHAR object in the Navigator and clicks on the “Set Message” menu item.
The GUIHAR object invokes the HARMessageEditor dialog. As the user types a text
message, any banned words are displayed if it’s a text message. When the user clicks “OK”,
the dialog checks the words (if it’s a text message) and displays any suggestions. If no
suggestions are made, the dialog calls the GUIHARModule to create message clips for the
header, trailer, and body of the message. The dialog then creates a HARMessage object and
inserts the clips into it, then calls the GUIHAR to set the message. The GUIHAR object
creates a CommandStatus to monitor the progress of the command, then calls the
CHART2HAR object which it wraps. If successful, the server will push CORBA events to
update the GUIs for any state changes.

This menu item
will be disabled

if the HAR is not

| in maintenance mode
/| orifthe user does not
/| have rights

5/ e

| Zlclicks on "Set Message']_

actionPerformed
*Creale%‘ HARMessageEditor

[types text for
keyPressed

GUIDictionary || CHART2HAR ‘ ‘ Gul CommandstatusHandler

GUIHARModule:

[banned words]
String[]
o 1
“Display Banned Words”
[cancel]
actionPerformed —
| closeWindow
| =
[OK clicked].

g

actionPerforme

[text clip]__
performApprovedWordsCheck
S [non-approved words]____________

String])

The suggested words may
- d be displayed in a separate dialog
Display Suggested Words' similar to a spell checker, but the

—ni| detals are left for implementation
rds}
idio clip]
[* for header createAudioDataClip
body, trailer] _text clip]
reateTextClip
create 9‘ HARMessage
setHeader———>
uuuuu y
tTrailer
get
getTokerr
fcreat&'ﬁ{ CommandStatus
frotin \ance mode] ‘,
CHART2Exception the server may push
o rights] HARStatusChanged,
AccessDeniéd ControlingOpCtrChanged, %
| and SHAZAMStatusChanged The server will update
[HAR controlled by or DMSStatusChanged the command status
another op center and no override rights} events object to update the GUI
ResourceControlConfiict ith garding
the progress of failure
R e T of the command.
1
ferror]
"Display Error*
ferror}
closeWindow
S

Figure 89. GUIHARModule:SetHARMessagelnMaintenanceMode
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-128 11/20/00

3.8.2.27 GUIHARModule:SetupHAR (Sequence Diagram)

This diagram shows how a HAR is set up in maintenance mode. The Administrator right
clicks on a GUIHAR object in the Navigator and clicks on the “Setup” menu item. The
GUIHAR creates a CommandStatus object to monitor the progress of the command and
calls the setup() method of the CHART2HAR object (which it wraps). If successful, the
server will push a CORBA event indicating the changes to the state of the HAR.

(o)
;t ‘ GUIHAR ‘ CHART2HAR ‘ GuUI CommandStatusHandler
Administrator
[clicks on "Setup HAR"
menu item]
actionPerformed
get

getToken

getCommandStialusHandler;

This menu item will be ——————createCommandStatu
disabled if the user does not create: CommandStatus
have rights or if the device is etup =

not in maintenance mode.

é,[in maintenance mode]_ -
CHART2Exception If successful, this may push a
HARStatusChanged and N
[no rights] SHAZAMStatusChanged or .
AccessDenied DMSStatusChanged events. Eéecsg;‘]ﬁ avxﬂsﬂg?aée
events. If the HAR was in use, it to show the pror regs
[HAR controlled by may also push a or failure of tge gommand
i ___different op ctr and ControllingOpCtrChanged event. .

no override rights]
ResourceControlConflict;

Figure 90. GUIHARModule:SetupHAR (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-129 11/20/00

3.8.2.28 Startup:Basic (Sequence Diagram)

This diagram shows the processing that occurs at the GUI’s startup. The GUI calls each
InstallableModule’s startup() method. The GUIHARModule connects itself to the ORB so
that it can receive the CORBA events from the Event Service. The GUIHARModule
installs itself into the frameworks of the GUIPlanModule, GUILibraryModule, and
GUITrafficEventModule so that it can support GUIPlanltem objects,
GUIHARStoredMessage objects, and GUIHARResponsePlanltem objects, respectively. It
also creates a HARNavGroup that will contain all of the GUIHAR objects in the Navigator,
as well as a SHAZAMNavGroup to contain all of the GUISHAZAM objects in the
Navigator.

P

FilterManager GUI

GUIHARModule

GUIPlanModule | | GUTraffi

GUILibaryModule

-activate_object
These calls will throw

a ClassNotFound exception
if the GUIPlanModule or the
GUITrafficEventModule or the
GUILibraryModule are
notinstalled. Inthis case, exception [---...]
will be caught and the module will -
not provide plan or traffic event or
library functionality.

get

+addPlantemSupporter—>1 Connect to the ORB to
PP be able to receive CORBA
get events pushed through the
== -addResponsePlanitemCreator event channel

: get

[filters not loaded from system
le]

profile}
getDi

HARNavGroup
B

SHAZAMNavGroup

Figure 91. Startup:Basic (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-130 11/20/00

3.8.2.29 GUIHARModule:Shutdown (Sequence Diagram)

This diagram shows what happens when the GUI shuts down. The GUI calls all of the

InstallableModule objects’ shutdown() methods, and the GUIHARModule uses this method
to disconnect itself from the ORB.

®)

User

"Exit"

GuUI GUIHARModule
]
shutdown
shutdown———> . .
deactivate object N
(GUIHARModule)
delete

R1B2 GUI Detailed Design Rev. 0

X

Figure 92. GUIHARModule:Shutdown (Sequence Diagram)

3-131

11/20/00

3.8.2.30 GUIHARModule:StoreHARMessagelnController (Sequence Diagram)

This diagram shows how a message is stored in a HAR slot in the controller, while the
HAR is in maintenance mode. With the HAR Properties Dialog open, the user clicks on the

“Store message” button. The dialog calls the GUIHARModule to create a

HARMessageClip of the appropriate type (text or voice), depending on the contents of the
message, and the GUIHARModule will call the HARFactory to create the clip. The dialog
then calls the GUIHAR wrapper object to store the slot message. The GUIHAR object
creates a CommandStatus object to monitor the progress of the command, then calls the
CHART2HAR to store the slot message. If successful, the server will push a CORBA event
update the GUIs with the new state of the HAR.

£

Operator HARPropertiesDialo CUHAR CHART2HAR ‘ ‘ sul CommandStatusHandler
[clicks on
[—~—"Store Message"|—>!

“actionPerformed

creat

eAudioClip or createTextClip-

This feature will

be disabled if the
HAR is notin
maintenance mode.

,,,,,,,,,,,,, [error]
< GUIException

1
[error]
"Displa}/ Error"

S R— [error]-—--m-t

—storeSlotMessage—=

[HAR under control of
<--another op ctr and no rights]--
ResourceControlConflict

[banned words]

DisapprovedMessageContent

get
-getToken
getCommandStatusHandler——————>}
hlﬂﬂ\c‘ C
tor
. .| i successful, this will push
[no rights] 1 push a HARStatusChanged
AccessDenied event

<,,,,,,,[no! in maintenance mode]______

CHART2Exception

[create CommandStatus

GUIHARModule

will be a derived
class which will
depend on which

The server will

" update the

CommandStatus
object to show the
progress or failure
of the command.

™ The type of the clip

format of clip is being
stored (text or voice).

Figure 93. GUIHARModule:StoreHARMessagelnController (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-132

11/20/00

3.8.2.31 GUIHARModule: TakeHAROffline (Sequence Diagram)

This diagram shows how a HAR is taken offline. The Administrator right clicks on a
GUIHAR object in the Navigator and clicks on the “Take Offline” menu item. The
GUIHAR creates a CommandStatus object to monitor the progress of the command and
calls the CHART2HAR object (which it wraps) to take it offline. If successful, the server
will push a CORBA event indicating that the comm mode has been changed.

o
;: ‘ GUIHAR ‘ CHART2HAR ‘ ‘ GuUI CommandStatusHandler
Administrator
|_[clicks on "Take Offline" menu item]_;
actionPerformed i
/ get
getToken

getCommandStjatusHandIer;

This menu item will be —————createCommandStatu
disabled if the user does not F—Ccreat CommandStatus
have rights or if the device is takeOffline——=

already offline.

[offline]
CHART2Exception
= If successful,
[no rights] this will push a .
‘AccessDenied HARStatusChanged event. The server will update
the CommandStatus
[HAR controlled by object to show the
_._differentop ctrand ___ progress or failure of the

no override rights] command.

ResourceControlConflict;

Figure 94. GUIHARModule: TakeHAROffline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-133 11/20/00

3.8.2.32 GUIHARModule: TakeSHAZAMOffline (Sequence Diagram)

This diagram shows how a SHAZAM is taken offline. The Administrator right clicks on a
GUISHAZAM obiject in the Navigator and clicks on the “Take Offline” menu item. The
GUISHAZAM creates a CommandStatus object to monitor the progress of the command
and calls the SHAZAM object (which it wraps) to take it offline. If successful, the server
will push a CORBA event indicating that the comm mode has been changed.

o

;t GUISHAZAM SHAZAM
Administrator

(o]
<

CommandStatusHandler

clicks on "Take Offline" menu item}|
actionPerformed i

get

getToKen

I getCommandStatusHandler———>}
This menu item will be ﬁ b createCommandStatu

disabled if the user does not
have rights or if the device is
already offline.

{—create—> CcommandStatus

takeOffline———=.___

[offline]
CHART2Exception
- If successful,
[no rights] this will push a -
AccessDenied SHAZAMStatusChanged event. -] The server will update
the CommandStatus

object to show the
progress or failure of the
command.

[SHAZAM controlled by
different op ctr and___
no override rights]
ResourceControlConflict

Figure 95. GUIHARModule: TakeSHAZAMOffline (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-134 11/20/00

3.8.2.33 GUIHARModule: TurnOffHARTransmitter (Sequence Diagram)

This diagram shows how a HAR’s transmitter is turned off in maintenance mode. The
Administrator right clicks on a GUIHAR object in the Navigator and clicks on the “Turn
Off Transmitter” menu item. The GUIHAR creates a CommandStatus object to monitor the
progress of the command and calls the setTransmitterOff() method of the CHART2HAR
object (which it wraps). If successful, the server will push a CORBA event indicating the
changes to the state of the HAR.

:Ot ‘ GUIHAR ‘ CHART2HAR ‘ GuUI CommandStatusHandler
Administrator
[clicks on "Turn Off
[—HAR Transmitter" menu item}7—>}
actionPerformed i
get
getToken

getCommandStialusHandler;

This menu item will be t——————————createCommandstatt
disabled if the user does not creat CommandStatus
have rights or if the device is ——setTransmitterOff—>}

not in maintenance mode.

é,[in maintenance mode]_
CHART2Exception If successful, the server
. willpusha & 4
Ac@gsrsll%rgz}ed HARStatusChanged event. T The server will update

the CommandStatus
to show the progress
[HAR controlled by or failure of the command.
6,,,,dlfferenl opctrand____
no override rights]
ResourceControlConflict;

Figure 96. GUIHARModule:TurnOffHARTransmitter (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-135 11/20/00

3.8.2.34 GUIHARModule:TurnOnHARTransmitter (Sequence Diagram)

This diagram shows how a HAR’s transmitter is turned on in maintenance mode. The
Administrator right clicks on a GUIHAR object in the Navigator and clicks on the “Turn
On Transmitter” menu item. The GUIHAR creates a CommandStatus object to monitor the
progress of the command and calls the setTransmitterOn() method of the CHART2HAR
object (which it wraps). If successful, the server will push a CORBA event indicating the
changes to the state of the HAR.

% ‘ GUIHAR ‘ CHART2HAR ‘ GuUI CommandStatusHandler
Administrator
[clicks on "Turn On
[—HAR Transmitter" menu item}7—>}
actionPerformed i
get
getToken

getCommandStialusHandler;

This menu item will be F————————createCommandStatt
disabled if the user does not creat CommandStatus
have rights or if the device is ——setTransmitterOn—s>}

not in maintenance mode.

é,[in maintenance mode]_
CHART2Exception If successful, the server
. willpusha | &
Ac@gsrsll%rgz}ed HARStatusChanged event. 1 The server wil update

the CommandStatus
to show the progress
[HAR controlled by or failure of the command.
6,,,,dlfferenl opctrand____
no override rights]
ResourceControlConflict;

Figure 97. GUIHARModule:TurnOnHARTransmitter (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-136 11/20/00

3.8.2.35 GUIHARModule:ViewHARSIotUsage (Sequence Diagram)

This diagram shows how the HAR slot usage is viewed. The HARPropertiesDialog will call
the GUIHAR object to get the slot usage, which will call the HAR object in the server
(which it wraps). The HAR object will create some HARMessageClip objects, one for each
slot, and the type of the clip object will depend on whether voice or text is being used. The
dialog can then display the contents of the clip for each slot that is in use. If the slot
contains a recorded message, a HARAudioClip will be returned which can be used to play
the message. (See the ListenToHARMessage diagram for details).

X

Operator

[invokes dialog]
create

Each clip will actually be a
HARMessageTextClip or
HARMessageAudioClip,
depending on which

format was sent to the

HAR and which type of

data is stored in the database.

Slot Data"

HARMessageClip

HARPropertiesDialog GUIHAR GuUI HAR
—getSlotUsage:
get
——getToken—>}
[status not cached|
getStatus
[error]
CHART2Exception
[error]
GUIException
_ [error]
Dlsplay Error [* for each
—slot in use]—>
HARStatu HARStatus create
“Initialize from

about how a user would be

See the ListenToHARMessage
I sequence diagram for details
able to listen to the clip.

Figure 98. GUIHARModule:ViewHARSIotUsage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-137

11/20/00

3.8.2.36 GUIHARModule:ViewHARStoredMessage (Sequence Diagram)

This diagram shows how a HAR stored message is viewed. This is a subset of the
ModifyHARStoredMessage sequence diagram, so refer to that diagram for details.

See the ModifyHAR StoredMessage
sequence diagram for details on how
the user may view a HAR stored message.

Figure 99. GUIHARModule:ViewHARStoredMessage (Sequence Diagram)

[DCE:197]

R1B2 GUI Detailed Design Rev. 0 3-138 11/20/00

3.9 GUIMessageLibraryModule

3.9.1 Class Diagrams

3.9.1.1 GUIMessageLibraryClasses (Class Diagram)

MessageLibraryFactory

GUILibraryModule GUILibrarySupporter

eatel token,string ibrary
getLibraryList():MessageLibraryList

reateGL Message) : GL

get)
addLibrarySupporter(GUILibrarySupporter)

e
createLibrary()

oken
Token, menuSting, guiLibrary) : boolean

createLibraryType():LibraryType

CosEvent.PushConsumer

java.awt.event
ActionListener
JAN

push

java.awt.event
KeyListener

LibraryType

m_columnnames
ame

m_class
getMessageTypeName():string
getlessageTypeClass():Class StoredMessage
setName()
- | 1
LibraryPropertiesDialog gelMessageDatal):StoredMessageData
B getMessage():Message
setMessage(Access Token, Message):void
selMessageData(AccessToken token,
[Tre———, A GUIMessageLibrary GUIStoredMessage . aeealeakiy
show() string category,
ssage msg)-void
GUIMessageLibrary(token,name) remove() remove(AccessToken):void
createLibraryTypes() editVessage()
addVessage(GUIStoredMessage) R
1 1| removeMessage()
MessageLibrary
remove():void
createStoredessage()
messageAdded()
setName(AccessToken token, string name):void messageRemoved()
createStoredMessage(AccessToken token, N
msg,
string description, MessageContent
string category) StoredMessage 1
getStoredMessages():StoredMessageList
isUsedByAnyPlan():boolean

isMessageUsedByAnyPlan(Identifier msgiD):boolean
Tok

DataModel

remove(AccessToken):void

Figure 100. GUIMessageLibraryClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-139 11/20/00

3.9.1.1.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of

information uses to push event updates to consumers who have previously attached to the
channel.

3.9.1.1.2 GUIHARStoredMessage (Class)

This class provides a GUI “wrapper” object that is used to wrap a StoredMessage CORBA
interface that contains HAR-specific data and to supply GUI-specific functionality.

3.9.1.1.3 GuUILibrarySupporter (Class)

This class allows the GUILibraryModule to maintain stored messages that have differing
formats. When an object of this type is installed the user can create, maintain, and use the
specific type of libraries and stored messages that the object supports.

3.9.1.14 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.9.1.1.5 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu
items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to

check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.9.1.1.6 GUIMessageLibrary (Class)

This class is a GUI “wrapper” object that is used to wrap a MessageL.ibrary object. The
wrapping is done to cache the data locally for faster access, as well as to give the
MessageL.ibrary some GUI-specific functionality such as menus and command handling.

3.9.1.1.7 GUILibraryModule (Class)

The GUILibraryModule is an installable module in the GUI, and provides all functionality
specific to stored message libraries and messages. Only one GUILibraryModule object may
exist within the GUI. This class provides the functionality needed to support stored
messages and stored message libraries.

R1B2 GUI Detailed Design Rev. 0 3-140 11/20/00

3.9.1.1.8 GUIStoredMessage (Class)

This class is a GUI “wrapper” object that is used to wrap a StoredMessage object. It
provides a user interface object which can implement whatever interfaces are necessary for
the object to exist within the GUI framework (for example, an object must support the
NavTreeDisplayable and/or NavListDisplayable interface to be displayed in the Navigator).

3.9.1.1.9 LibraryPropertiesDialog (Class)

This dialog is used to view and edit the stored message library’s name and other properties.

3.9.1.1.10 MessageL.ibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.9.1.1.11 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.9.1.1.12 HARMessageContent (Class)

This class represents a HAR message. It consists of header, body and footer of the message
that can either be in audio format or plain text.

3.9.1.1.13 java.awt.event. KeyL.istener (Class)

Interface that a class must realize in order for objects of that class to be notified when the
user presses a key.

3.9.1.1.14 LibraryNavGroup (Class)

This class has one instance in the GUILibraryModule. It serves as a container for all of the
GUILibrary objects in the module when they are displayed in the Navigator.

3.9.1.1.15 LibraryType (Class)

This object stores information pertaining to each type of stored message library that is
supported within the system. It is needed to display different types of messages that have
different attributes.

R1B2 GUI Detailed Design Rev. 0 3-141 11/20/00

3.9.1.1.16 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.9.1.1.17 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.9.1.1.18 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.9.1.1.19 MessageContent (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.9.1.1.20 MessageL.ibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

R1B2 GUI Detailed Design Rev. 0 3-142 11/20/00

3.9.2 Sequence Diagrams

3.9.2.1 GUILibraryModule:CreateLibrary (Sequence Diagram)

This diagram shows how a stored message library is created. First, the user right clicks on
the Message Library in the navigator and selects Add Library on the menu. This calls the
GUILibraryModule that checks the functional rights of the user and will, if the user has the
correct rights, display the Properties dialog. The user enters information about the new
library and presses enter. The GUILibraryModule is called to create a library. For each
different type of stored message supported in the system, the GUILibraryModule creates a
LibraryType object that allows the system to properly display message types with different

attributes.

X

LibraryNavGroup

Operator

‘ GUlLibraryModule

‘ GUlLibrarySupporter

"[Add Library menu
item selected"
actionPerformed

[No Rights]

"Check Functional

accessDenied

creats | LibraryProperties Dialog

show

"Display Dialog"

[User enters library name]

actionPerformed

createLibrar)

MessagelLibraryFactory

getToken

createLibrary

[error]

AccessDenied
[error]

Chart2Exception

[error]

"Dlsplar Error"

[success]
"Close Window"

R1B2 GUI Detailed Design Rev. 0

X
Figure 101. GUILibraryModule:CreateLibrary (Sequence Diagram)

3-143

11/20/00

3.9.2.2 GUlLibraryModule:CreateStoredMessage (Sequence Diagram)

This diagram shows how a stored message is created. First, the user right clicks on the
GUIMessageL.ibrary object, which calls the GUILibraryModule to get the installed library
supporters. Each library supporter returns menu items for message types that it can create.
When the user clicks on the appropriate message type, the GUIMessageL.ibrary object is
called again, and this time it asks each library supporter to create the correct type of
message based on the menu item. When the correct creator is found it opens its message
editor. The operator enters the stored message data. When the data is saved, the information
is stored in the database and the server will push a StoredMessageAdded event. The
GUILibrary moduleGUILibraryModule then calls the GUIStoredMessage

o
NavTres ‘ ‘ cul Gl ibrary GULL ‘ GUL ‘ Messagelibrary
Operator
|_iright clickl__

mousePressed fright clickl__

get
F——getGULLibrarySupporterss

[* for each GUILibrarySupporter]
getStoredMessageCreationVenuReps

Ly L—

“Display Menu"

[user clicks on menu item].

—_— s This would be the specific
actionPerformed get type of message edtor
eators: 4 supported by the
/| GUILibrarySupporter
createNewGUIStoredMessage
GUlLibrarySupporter __[unknown menuitem] .
false

[correct menu item]
"Display Message
Editor Dialog™

oo |COTECt MeNUteM]
true

These operations would _| The type of message would actually
be invoked via a _""| be aderived class, based on the type
message editor for the specific of message being created.

type of message being edited

j Message

get
getTokem——

[no rights]
AecessDenied

[bad message content]
DisapprovedMessageContént

[other error]____
[error] CHART2Exception
"Display Error" |

If successful,
the server will push

a StoredMessageAdded
event. The GUILibraryModule
will catch the event and ask
all of the GUIStoredMessageCreator
objects to attempt to create the
correct type of GUIStoredMessage,
then the GUIStoredMessage will

be added to the DataModel.

Figure 102. GUILibraryModule:CreateStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-144 11/20/00

3.9.2.3 GUILibraryModule:DeleteLibrary (Sequence Diagram)

This diagram shows how a stored message library is removed from the system. First, the
user right clicks on the Message Library in the navigator and selects Delete Library on the

menu. This calls the MessageL.ibrary object, which removes the library and any stored
messages, contained in the library.

;(): GUIMessageLibrary GUI MessagelLibrary
Operator
| [Delete Library selected]e
actionPerformed
remove

| If successful the

getToken ~1 server will push a
library removed event.

remove(Access Token)

[no Fights 1
AccessDenied

[other error]
Chart2Exception

[error]
showMessageDialog

[error]
"Show error message”

X

Figure 103. GUILibraryModule:DeleteLibrary (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-145 11/20/00

3.9.2.4 GUlLibraryModule:DeleteStoredMessage (Sequence Diagram)

This diagram shows how a stored message is deleted. First, the user right clicks on the
GUIMessageL.ibrary object, which calls the GUIStoredMessage to remove itself from the
system. Once the object is removed from the system the HandleEventLibraryRemoved
diagram shows how the navigator is updated for all users.

X

Operator

[Delete Stored Message
item selected]
actionPerformed

[error]

GUIStoredMessage

remove

removeN

GUIMessageLibrary

je(GUIStoredMessage)

getTokem——————

[no rights]

—removeMessage(token,message)—>

AccessDenied
[other error]

"display error message"

——showMessageDialog

Chart2Exception

X

MessageLibrary

If successful,a
StoredMessageRemoved
event is pushed.

Figure 104. GUILibraryModule:DeleteStoredMessage (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-146

11/20/00

3.9.2.5 GUILibraryModule:Discovery (Sequence Diagram)

This diagram shows how the Library Module event channels and the library and stored
message objects are discovered and added to the system. This will be a periodic process,
and the GUI will call the GUILibraryModulereeatedly. When the GUI asks the module to
discover event channels, it looks up the library event channels in the trader. It then creates a
PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the
consumer to the channel and reattches it if the event service is restarted. (Duplicate
channels will be ignored). The GUI then calls the module to dicover objects. At this time
the module will query the Library objects in the trader. If any are found it will create an
Identifier to be used as a lookup key for use with the DataModel. For each library found
and added to the DataModel the module finds all stored messages. To create a
GUIStoredMessage wrapper object, the module attemts to create the stored message using
each installed GUILibrarySupporter. When the correct supporter is used the wrapper object
is created and added to the DataModel and the GUIMessageL.ibrary objects.

eeeeee 7| GUessageLibrary
for each LibraryTy
GUbranSupporer 7| UbeansType
acioy for each

library

for e

st

essage

\

e
rﬁ&
Il
&3
g
gi
i
g
%4
&

Figure 105. GUILibraryModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-147 11/20/00

3.9.2.6 GUILibraryModule:HandleEventLibraryAdded (Sequence Diagram)

This diagram shows how the GUI receives information when a library is added to the
system from the CORBA Event service and displays it to the user once the DataModel is

updated.
;O:
CORBA
Event GUILibraryModule ‘ GuUI ‘ ‘ DataModel ‘
Service
push(LibraryAdded)
—create% Identifier
get
getDataMode——>
,,,,,,,,,,,, [GUIMessagelLibrary. getObject

found in DataModel]

Creater

~| GUIMessagelLibrary

LibraryType
——create— i

createLibraryTypes

getLibrarySupporters:

for each supporter
iK<—objectAdded—
L |

objectAdded

type of message available in the system
Each message type has a unique column

When the library is created, it
must contain a place holder for each
structure.

Figure 106. GUILibraryModule:HandleEventLibraryAdded (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-148 11/20/00

3.9.2.7 GUILibraryModule:HandleEventLibraryNameChange (Sequence Diagram)

This diagram shows how the GUI receives information when a library name is changed
from the CORBA Event service and displays it to the user once the DataModel is updated.

CORBA
Event GUILibraryModule ‘ GuUl ‘ ‘ DataModel ‘
Service

[—push(Library Name Change)—>}
;creale%(Identifier

get

GUIMessagelL ibrary LibraryType

getDataModel

getObject

...[GUIMessageLibrary
not found in DataModel]

for each

Librart Type etName

objectUpdated

objectUpdated

Figure 107. GUILibraryModule:HandleEventLibraryNameChange
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-149 11/20/00

3.9.2.8 GUILibraryModule:HandleEventLibraryRemoved (Sequence Diagram)

This diagram shows how the GUI receives information when a library is removed from the
system from the CORBA Event service and displays it to the user once the DataModel is
updated.

GUlLibraryModule ‘ GUIl ‘ ‘ DataModel ‘ LibraryNavGroup GUIMessageLibrary ‘ LibraryType GUIStoredM
Corba Event Service]
[—push(library removed)—>
getDataModel
getObject:
. [iibrary not found] ____
Log error
cleanup:
[* for each LibraryType].
objectRemoved(LibraryType)
[for each GUIStoredMessage] ><
objectRemoved(GUIStoredMessage)
objectRemoved(GUjMessageL braryy Avter all ob;ervers remove their
oveLibr: reference to this object, it will be
rem a >< deleted by Java garbage collection.
<—objectUpdated——

Figure 108. GUILibraryModule:HandleEventLibraryRemoved (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-150 11/20/00

3.9.2.9 GUILibraryModule:HandleEventStoredMessageAdded (Sequence Diagram)

This diagram shows how the GUI receives information when a stored mesage is added to
the system from the CORBA Event service and displays it to the user once the DataModel
is updated.

X

CORBA
Event
Service

GuUlLibraryModule

[—push(StoredMessageAdded)—>

_[GUIMessageLibrary
not found in DataModel]

for each
GUILibrarySupporter

StoredMessage

Ul ‘ ‘ DataModel ‘

GUlLibrarySupporter

*creatz% Identifier

get:

-getDataModet

getObject

createGUIStorec

[unkncwn(ypeof:- lessage]
null {

This will actually
be a derived class
with a type specific
to the type of
message.

GUIStoredMes

[correct type of
) GUIStored
create

messageAdded

-objectAdded(GUIStoredM

objectAdde(GL ibrary)

Figure 109. GUILibraryModule:HandleEventStoredMessageAdded

R1B2 GUI Detailed Design Rev. 0

(Sequence Diagram)

3-151

GUIMessageLibrary

11/20/00

3.9.2.10 GUILibraryModule:HandleEventStoredMessageRemoved (Sequence Diagram)

This diagram shows how the GUI receives information from the CORBA Event service
when a stored message is removed from the system, and displays it to the user once the
DataModel is updated.

GUIMessageLibrary LibraryType GUiStoredVessage

‘ GUlLibraryModule ‘ GuUl ‘ ‘ DataModel

CorbaEvent Service

[——push(message id)—>
After all observers remove their L\
reference to this object, it will be
| deleted by Java garbage colection.

getObject———>4

for each
Mesage removed

X

Figure 110. GUILibraryModule:HandleEventStoredMessageRemoved
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-152 11/20/00

3.9.2.11 GUILibraryModule:Login (Sequence Diagram)

This diagram shows what happens when the user logs on.

X

GUI GUILibraryModule
User
llLoginll
or
"Change User" +———Joggedin——> The module currently

does not perform
‘| any work at login.

Figure 111. GUILibraryModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-153 11/20/00

3.9.2.12 GUILibraryModule:Logout (Sequence Diagram)

This diagram shows what happens when the user logs out of the system.

} GUI GUILibraryModule
User
"Logout"
or
"Change User” loggedOut———> The module currently

does not perform
‘| any work at logout.

Figure 112. GUILibraryModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-154 11/20/00

3.9.2.13 GUILibraryModule:SetLibraryName (Sequence Diagram)

This diagram shows the steps taken to change the name of an existing library. The user
right clicks on a library and selects the Set Name option. A dialog is displayed and the user
is allowed to enter a new name. On pressing enter the name is changed.

% LibraryNavGroup GUI GUIMessageLibrary
Operator
| [right click]
mouse pressed
[right click]
makeMenu
—getSSMenultemReps—>
i<-~MenultemRep[}-—
JMenu

)
"Dlsplaf/ Menu"

[user clicks on menu item] S
actionPerformed

GUILibraryPropertiesDialog

[error]

—Create—>
getName
"Display Dialog"
[User enters new library name]
actionPerformed
setName
getToken

setName(token, name)

"Show error message"”

[User Closes Dialog]

X

show

MessageLibrary

[AccessDenied or
Chart2Exception]

"Show Error Message"

closeWindow

Figure 113. GUILibraryModule:SetLibraryName (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-155

11/20/00

3.9.2.14 GUILibraryModule:Shutdown (Sequence Diagram)

This diagram shows what happens when the GUI shuts down. The GUI cals all of the
InstallableModule objects’ shutdown() methods, and the GUILibraryModule disconnects
from the ORB.

@
e

GUILibraryModule

X

User

Exit

shutdown shutdown

disconnect—— >

delete

X

Figure 114. GUILibraryModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-156 11/20/00

3.9.2.15 GUILibraryModule:Startup (Sequence Diagram)

This diagram shows the steps taken to initialize the GUILibraryModule. On startup the
module creates the LibraryNavGroup for display of he libraries in the navigator and

connects to the ORB.

X

GUI

The module will stay for
the life of the application and
will be cleaned up at shutdown.

l<—getDataModel—

(]
0
[os

GUILibraryModule

startup———>

connect

DataModel

create

LibraryNavGroup

Figure 115. GUILibraryModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-157

objectAdded

11/20/00

3.10 GUIPlanModule

3.10.1 Class Diagrams
3.10.1.1 GUIPlanClasses (Class Diagram)

This diagram shows the classes used by the GUIPlan module and their relationships.

java.awt.event.
NavListDisplayable ActionListener
Response

DataCreator N

createResponsePlanttemData() :

ResponsePlanitemData CosEvent.
geﬁResponseTavgeﬂD()-'dgﬂﬂer i | Uniquelyidentifiable Menuable NavTreeDisplayable PushConsumer
— . > < .| GUIPlanNavGroup GUIPlanMadule
GUIPlanitem GUIPlan * 1 11
m_name — 0
gel
1 1 addGUIPlan ddi
GUIPlanitem(Planitem, GUIPlan addplanttem Supporter()
Planitem }7 (1) agmgm:g)‘mm) removeGUIPlan getPlanitemSupporters()
getName() removeGUIPlanitem(guiPlanitem) 0.1
getGUIPlan() addltemtoCache(planitem, planitemID) 1
getlPlanttem() removeltemFromCache(planitemID)
-remove() doProperties()
-modify() setProperties()
rrerr)oveg))
-activate|
gethemsFromPlan() PlanitemCreationSupporter
1
getPlanite Token) : Ment Pl
createGUIPlanltem(planitem, itemID, plan) : GUIPlanitem
“ createNewGUIPlanltem (accessToken, menuString, plan) : boolean

Figure 116. GUIPlanClasses (Class Diagram)

3.10.1.1.1 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.10.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.10.1.1.3 GUIPIlan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data
locally for faster access, as well as to give the Plan some GUI-specific functionality such as
menus and command handling.

R1B2 GUI Detailed Design Rev. 0 3-158 11/20/00

3.10.1.1.4 GUIPlanltem (Class)

This is a GUI base class for all the plan items. Each GIUPlanltem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

3.10.1.1.5 GUIPlanModule (Class)

This is an installable GUI module that handles the Plan functionality in the GUI. Other
modules that support plan items must attach their PlanltemCreationSupporters to the
GUIPlanModule at startup. The plan module will call the supporters when it is necessary to
create a specific type of GUIPlanltem.

3.10.1.1.6 GUIPlanNavGroup (Class)

This class serves as a container for all of the GUIPlan objects in the GUIPlanModule, when
they are displayed in the navigator. It provides functionality for displaying menus. The
GUIPlanModule has one instance of this class.

3.10.1.1.7 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.10.1.1.8 java.awt.event. ActionL.istener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.10.1.1.9 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu
items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.10.1.1.10 NavL.istDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

R1B2 GUI Detailed Design Rev. 0 3-159 11/20/00

3.10.1.1.11 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.10.1.1.12 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic
event. Each action is defined to be a Plan item. The Plan supports functionality to add and
remove plan items.

3.10.1.1.13 Planltem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.10.1.1.14 PlanltemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module.
The modules must attach their PlanltemCreationSupporters at startup. The GUIPlanModule
will then call the supporter when it is time to display the Plan menu or to create a specific
type of plan item or GUIPlanltem.

3.10.1.1.15 Response DataCreator (Class)

This interface enables the creation of type-specific ResponsePlanltemData objects, which
are used for creating the appropriate type of ResponsePlanltem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

3.10.1.1.16 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-160 11/20/00

3.10.2 Sequence Diagrams

3.10.2.1 GUIPlanModule:AddPlan (Sequence Diagram)

This diagram shows how a new plan is added to the system. The user clicks on the Add
Plan menu item in the GUIPlanNavGroup’s context menu. (This menu item will only be
displayed if the user has rights.) The GUIPlanNavGroup will create an uninitialized
GUIPlan object with default properties and will call its doProperties method. This is a
temporary object, used only for displaying the properties. The temporary GUIPlan will
create a modeless PlanPropertiesDialog and display it. When the user clicks OK, the dialog
will ask the GIUPIan to create a Plan from the properties entered from the dialog. A
CommandStatus object is created to keep the user informed about the progress of the
command. The GUIPlan queries the trader for all of the Plan Factories. It then tries to create
the plan by calling each plan factory in the trader passing it the access token, until a factory
successfully creates the Plan object. If the Plan was created, the PlanAdded event will be
pushed from the plan server through the plan event channel to update all of the GUIs. See
the GUIPlanModule:PlanAddedEvent diagram for more details.

; : GUIPlanNavGroup CommandStatus PlanFactory ‘ ‘ GuI ‘
Operator Handler CorbaUltilties
[operator clicks
|__on create plan S
1 o menuitem] 7L on GUPlan
| actionPerformed creat =

This menu item will doPropertie:

be disabled if the user P

does not have rights crea PlanProperties

[user clicks OK]
actionPerformed
P
getl
cr
create—}
If successful, the server
findAllObjectsOfType: pushes a PlanAdded event.
See PlanAddedEvent
sequence diagram for
o factories found] | Getaie € 4o

This queries the L completed
trader for all the
Plan factories

no factories found}

getToken

[*for each PlanFactory found, until plan is created]
y createPlan

\ [error]
AccessDenied or CHAR T2Exception

[error]
Completed

[plan created]
completed

status window. In case of a failure,
an eror message is also displayed

The completion status
will be shown in the command
in the command status.

The Plan that was
added here s discovered
through the CORBA event
generated by the server
This is the reason for
deleting the GUIPIan here.
Refer to PlanAddedEvent
sequence for detals.

Figure 117. GUIPlanModule:AddPlan (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-161 11/20/00

3.10.2.2 GUIPlanModule:CreatePlanltem (Sequence Diagram)

This diagram shows how a plan item is created. When the user invokes the menu on the
GUIPIan object, the GUIPIan object asks the GUIPlanModule for all of the attached
PlanltemCreationSupporters. It then asks each of the supporters for the strings to use for the
plan item creation menu items. Each string is associated with the supporter that supplied it,
and the associations are stored in the GUIPIan object for use when a menu item is clicked
on. When the user clicks on one of these menu items, the GUIPlan’s actionPerformed
method will be called, and the GUIPlan will find the matching string stored in the
association, and will call the corresponding PlanltemCreationSupporter to create the new
plan item. See the modules that support plan item creation for more details on how plan
items are created.

PlanitemCreation
GUIPlan GUIPlanModule Supporter
Operator
[user right clicks
on plan]
getSSMenultemReps

getPlanltem Supporters——————>

[* for each supporter]
getPlanitemCreationMenuReps

1
[* for each menu string] Each plan item

"storeSupporterMenuStringAssociation” .| supporter will

! have to check the
access token
before returning
the string for the
menu item, and
if the user does
not have permission,

[user clicks on
[——create plan item]—>!

actionPerformed not have p
This menu item wil [creation supporter found
be disabled if the user for action str:ngj
does not have rights. createNewGUIPlanitem

™ This will cause the B
Planitem CreationSupporter
to display a plan item properties
dialog for the specific type of
plan item. If the user successfully
enters all pertinent data,
the supporter will call the
specific plan item factory in the
server to create the plan item,
which will then push a plan item
created event to all of the attached
event consumers. See
the sequence diagram
GUIPlanModule:PlanttemAddedEvent
and the Plan module for more details.

Figure 118. GUIPlanModule:CreatePlanltem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-162 11/20/00

3.10.2.3 GUIPlanModule:Discovery (Sequence Diagram)

This diagram shows what happens during the discovery process, in which the module has a
chance to find out about event channels and objects. The GUI will periodically call the
module, first to discover event channels and then to discover objects. During the event
channel discovery phase, the module looks for Plan event channels in the trader. If it finds
any, it creates a PushEventConsumer and attaches itself to the Event Consumer Group. This
will attach the module to the event channel and will reattach it automatically if the event
service is restarted. If the module was previously attached to the event channel, it will be
ignored. During the object discovery phase, the GUI calls the module to discover objects.
The module will query the Plan objects in the trader. If the Plan does not already exist in
the DataModel, a new GUIPlan wrapper object will be created and added to the DataModel.
When the GUIPIan object is created, it asks the Plan for all of its Planltems. For each item
that is not already in the DataModel, it will call all of the attached
PlanltemCreationSupporters and ask each one to attempt to create the specific type of
GUIPlanltem wrapper object for the generic Planltem object. Each
PlanltemCreationSupporter will check whether the generic Planltem object is of its own
specific class of plan item. If so, the PlanltemCreationSupporter must create an object of its
own specific class of GUIPlanltem object to wrap the Planltem. If a wrapper object was
created, it will be added to the DataModel. After a short delay, the changes made through
the DataModel will update any windows that are attached to the DataModel.

R1B2 GUI Detailed Design Rev. 0 3-163 11/20/00

Event Planitem
Consumer Creation
S0 GUPlanModule Plan Planitem CORBAULtiities Group
[-discoverEventChannels—>
findObjects (Plan Y
PushEvent
[* for each event channel] Consumer
create I
[* for each event channel]
< - add
|—discoverObjects
findAllObjectsOfTyp
-getDataMode———
getiD
T creawe 2| Wentfier
g t
{_[plan not found
create GuUlPlan
[* for next getlterr
This will work only
discovered plar] ifthe PlanCreationSupporters
A gt added themselves to the
reat GUIPlanModule in their startup
methods.
. [not already in list])
[P‘faon’“':"ﬂ [* for each plan item supporter} - [plantemData
e — createGUIPlanttem (plan, planttern) type matches
P nupdate state” ———supporter's GUPlanitem
i 'Vpe‘] _
[GUPlanitem created] create
objectAdded
The plan item N
[GUIPlan created] created will be
objectAdded(GUIPlan) of the specific
class implementing
GUIPlanitem.

Figure 119. GUIPlanModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-164 11/20/00

3.10.2.4 GUIPlanModule:PlanAddedEvent (Sequence Diagram)

This diagram shows how the event is handled when a Plan is added. The GUIPlanModule
makes sure that the GUIPIlan does not already exist in the DataModel, and assuming it does
not, it creates the GUIPlan wrapper object for the Plan. The GUIPlan object is then added to
the DataModel and the GUIPlanNavGroup, and the DataModel will update all attached
observers to show the change.

: : GUIPlanModule

CORBA Plan GuUl DataModel GUIPlanNavGroup
Event
Service
push (Plany——>
getDataModel
getObject
[plan found]
——create—>| GUIPlan
getName——>}

objectAdded(GUIPlan)

addGUIPlan

objectUpdated(GUIPlanNavGroup)

Figure 120. GUIPlanModule:PlanAddedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-165 11/20/00

3.10.2.5 GUIPlanModule:PlanltemAddedEvent (Sequence Diagram)

This diagram shows the handling of the event after a new Planltem has been created. First,
the GUIPIan to which the new Planitem belongs is retrieved from the DataModel. Then the
module will ask each PlanltemCreationSupporter to attempt to create a specific
GUIPlanltem wrapper object if the generic Planltem is a correct type for the supporter. If a
GUIPlanltem object was created by one of the creation supporters, it is added to the
GUIPIan and to the DataModel. The GUIPIan is also updated through the DataModel to
make sure that any windows will be updated.

GUIPlanModule Planitem
(ée’el:]‘? GUIPlan CreationSupporter DataModel Gul

Service

push,
plan id, planitemid, plan item: getDataMo

-getObject(planic
[<-—[plan not found}---

-getObject()

[GUIPlanttem
already exists]

——additemToCache—>}

<—getPlanitemSupporters—;
[* for each plan item supporter
until a GUIPlanitem is returned——>

createGUIPlanitem [PlanttemData matches the
upporters' specific class}

create GUPlanitem The plan item

T 1 supporter will

create its own

ided(specific type of
oblectad ; i GUPlaniiem.

[<—~[no plan item created]-—

objectl id) ;

Figure 121. GUIPlanModule:PlanltemAddedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-166 11/20/00

3.10.2.6 GUIPlanModule:PlanltemRemovedEvent (Sequence Diagram)

This diagram shows how a PlanltemRemoved event is handled, after a plan item is deleted.
The GUIPlanModule received the Planltem identifier and looks up the GUIPlanltem object
in the DataModel. If found, the module gets the GUIPIan and asks it to remove the
GUIPlanltem from its collection. The GUIPlan object is then updated through the
DataModel, and the GUIPIanltem is removed from the DataModel. Any attached observers
(e.g., windows) will be updated after a short delay. The GUIPlanltem will then be removed
from memory by Java when the observers remove their references to it.

X

CORBA GUIPlanModule cul DataModel GUIPlanitem GUIPlan
Service
Hpush(planiD, planitemId)—=>}
——getDataModel—>}
[GUPlan__ getObject(planiD) >
=TT not found]
removeltemFromCache

objectUpdated(GUIPlany———>

objectRemoved:(GUIPIanItem)—,ﬁ

After a short delay, Il
the DataModel

will call all attached
observers. After

all observers remove
their references to

the GUIPlanitem, the
object will be deleted
from memory by

Java garbage collection.

Figure 122. GUIPlanModule:PlanltemRemovedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-167 11/20/00

3.10.2.7 GUIPlanModule:PlanRemovedEvent (Sequence Diagram)

This diagram shows how a PlanRemoved event is handled. First, an attempt is made to get
the GUIPIan object from the DataModel. If it exists, the GUIPIlan is removed from the
GUIPlanNavGroup. The GUIPlanNavGroup update notification is invoked through the
DataModel, and the GUIPIan is removed from the DataModel. The DataModel will cause
any attached observers to display the change.

£

CORBA
S%\:\?ir(]:te GUIPlanModule Gul DataModel GUIPlanNavGroup GUIPlan
—push(plan id)—>!
getDataModel———>

getObject

removeGUIPlan
objectUpdated(GUIPlanNavGroup)

objectRemoved :GUIPIan)—-?

.. | After a short
| delay, the DataModel
will notify all observers.

After the observers
remove their references
to the GUIPIan, it will ><
be deleted at some time

by the Java garbage

collection. |

Figure 123. GUIPlanModule:PlanRemovedEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-168 11/20/00

3.10.2.8 GUIPlanModule:RemovePlan (Sequence Diagram)

This diagram shows how a plan is removed from the system. The operator clicks on the
Delete Plan menu item. A CommandStatus object is created to keep the user informed
about the progress of the command. The GUIPIan then gets the access token and calls the
Plan to remove itself. If successful, it will cause the server to push a PlanRemoved event to
be pushed through the event channel. See the diagram GUIPlanModule:PlanRemovedEvent
for details on how the GUIs are updated after the plan is removed.

CommandStatus
GUIPlan Handler lan GuUI

Operator

[clicks on

delete plan,

menu item]
actionPerformed

———————————————————getCommandStatusHandler
This menu item will be
disabled if the user does createCommandStatu:
not have rights.
If successful, the server

’ecreatef Gets User %
CommandStatus confirmation
i removes all the plan items

howYesNoDialog - within the plan and the

plan itself. The server

then pushes a PlanRemoved
event. Refer to the
GUIPlanModule:PlanRemovedEvent
| for more details.

i_[user cancelled operauion]9
completed

The GUIPlan object is
actually deleted in

the data model, when

the Plan server sends

out a PlanRemoved event.
This process is shown

in the PlanRemovedEvent
sequence diagram.

-getToken

remove-

[error]
AccessDenied or CHART2Exception

[error]
completed

[success] _/
completed”

status window. In case of a failure,
an error message is also displayed

The completion status
will be shown in the command
in the command status.

Figure 124. GUIPlanModule:RemovePlan (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-169 11/20/00

3.10.2.9 GUIPlanModule:RemovePlanltem (Sequence Diagram)

This diagram shows how a plan item is removed from a plan and deleted. The operator
selects the plan item and invokes the item’s context menu, then clicks on Delete Item. The
GUIPlanltem calls the GUIPIlan that it is contained in to remove the item. The GUIPIlan
then calls the Plan to remove the item. The served Plan object will then remove the item
and push a PlanltemRemoved event through the event channel. See the diagram
GUIPlanModule:PlanltemRemovedEvent for more details on this event.

Operator

GUPlantem | | GUPlan

This menu item
will be disabled if
the user does not
have rights.

[user clicks on
Remove.
i menuitem] | —
i actionPerformed getGUIPlan
removeltem

-getCommandStatusHandler———>

getToker

CommandStatus create

createCommandStatus

The remove command completion
status will be shown in the command

status window. In case of a failure,

an error message is also displayed

in the command status.

error

delete————

X

CommandStatus
GUI Handler Planitem lan
emove
t—removetem—=!
[no rights]
AccessDenied
[other error]
CHART2Exception
ucce:

| by the server.
| See the diagram

If successful,
a PlanitemRemoved
event will be pushed

GUIPlanModule:
PlanitemRemovedEvent
for more details on GUI
handling of this event.

Figure 125. GUIPlanModule:RemovePlanltem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-170

11/20/00

3.10.2.10 GUIPlanModule:Shutdown (Sequence Diagram)

When the GUI calls the module’s shutdown method, the module deactivates from the POA

to clean up.
@)
GUIPlanModule
GUI ORB
shutdown——>
disconnect——>
log

Figure 126. GUIPlanModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-171

11/20/00

3.10.2.11 GUIPlanModule:Startup (Sequence Diagram)

The startup for the GUIPlanModule begins when the GUI calls the startup method. At this
time the module activates itself with the POA so that it can be called as a PushConsumer. It
also creates a Navigator group to hold the GUIPIlan objects and adds the group to the
DataModel. NOTE: Any modules deemed necessary to support plan item creation should
attach themselves to the GUIPlanModule in their startup methods.

: : GUIPlanModule POA DataModel
GUI

startup

activate_object—=>

create— GUIPlanNavGrou

[<—getDataModel—

objectAdded

In the modules which

implement PlanitemCreationSupporter,
they should call the Plan Module's
addPlanitemSupporter from within
their startup methods.

Figure 127. GUIPlanModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-172 11/20/00

3.11 GUIResourcesModule

3.11.1 Class Diagrams

3.11.1.1 GUIResourcesModuleClasses (Class Diagram)

This diagram represents the classes used by the GUI Resources module and their
relationships.

GUIOperationsCenter <>————— OperationsCenter

1.*
1

DataModel
java.lang.
1 Runnable
1 JAN
1 * CosEvent.
GUI <>— InstallableModule PushConsumer i
; i Resource
Transfer
: Command
) Resource
GUIResourcesModule PushReceiver
1 1
>——

Figure 128. GUIResourcesModuleClasses (Class Diagram)

3.11.1.1.1 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of

information uses to push event updates to consumers who have previously attached to the
channel.

3.11.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

R1B2 GUI Detailed Design Rev. 0 3-173 11/20/00

3.11.1.1.3 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.11.1.1.4 GUIResourcesModule (Class)

This class is an installable GUI module that handles all of the resource-specific
functionality in the GUI.

3.11.1.15 java.lang. Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.11.1.1.6 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.11.1.1.7 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.11.1.1.8 GUIOperationsCenter (Class)

This class is a GUI “wrapper” object that is used to wrap a OperationsCenter object. The
wrapping is done to cache the data locally for faster access, and to provide GUI-specific
functionalities to the wrapped object.

R1B2 GUI Detailed Design Rev. 0 3-174 11/20/00

3.11.1.1.9 Resource PushReceiver (Class)

This class receives CORBA events from the Resource event channel and deals with each
type of event as appropriate.

3.11.1.1.10 Resource Transfer Command (Class)

This command object is invoked on the main AWT event thread after an
UnhandledControlledResources CORBA event is received. This enables the
TransferResources dialog to be invoked from the event thread.

R1B2 GUI Detailed Design Rev. 0 3-175 11/20/00

3.11.2 Sequence Diagrams

3.11.2.1 GUIResourcesModule:Discovery (Sequence Diagram)

This diagram shows how the Resources event channels and Operations Center objects are
discovered and added to the system. This will be a periodic process, and the GUI will call
the GUIResourcesModule repeatedly. When the GUI asks the module to discover event

channels, it looks up the Resource event channels in the trader. It then creates a
PushEventConsumer and adds it to the EventConsumerGroup, which actually attaches the

consumer to the channel and reattaches it if the event service is restarted. (Duplicate

channels will be ignored). The GUI then calls the module to discover objects.

X

GUIResourceModule
GUI

CosTrading.Lookup

[—discoverEventChannels—>

EventConsumerGroup

DataModel

discoverObjects—>

query
(Resource Event Channels)
[for each event channel]
create

[for each channel found)]

add

[<—getDataModel

(OperationsCenter objects)

PushEventConsumer

OperationsCenter

getlD:

getObject

[not found]

create

[GUIOperationsCenter created]
objectAdded

GUIOperations
Center

getEligible
F——Response—>}
Participants

Figure 129. GUIResourcesModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-176

11/20/00

3.11.2.2 GUIResourcesModule:EventHandling (Sequence Diagram)

The EventHandling diagram shows how the GUI receives update information from the
CORBA Event service and displays it to the user once the DataModel is updated.

Resource
PushReceiver

GUIOperations
Center

TokenManipulator

event]

<—objectUpdated—;

Ul ‘ DataModel
ORB
push
——(ResponseParticipantAdded
or Responser oved) get
——getDataMode——=
bject
K [not found—————- [ResponsePartiip even]
responseParticipantAdded;
[Respons: ici d
responseParticipantRemoved
push,
(Unhar nt)

get
getTokem——>1

javax.swing.
SwingUtilties

checkAcces

(TransferA

ource)—;
[has rights]

Resource
Transfer

create

Command

invokeLater

get
transferControlledResource:

This will be invoked on the k
main AWT event thread.

Figure 130. GUIResourcesModule:EventHandling (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-177

11/20/00

3.11.2.3 GUIResourcesModule:Login (Sequence Diagram)

This diagram shows what happens in the GUIResourcesModule when the user logs in to the

system.

X

GUI

GUIResourcesModule

loggedin——>

This module currently performs
no work on login.

Figure 131. GUIResourcesModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-178

11/20/00

3.11.2.4 GUIResourcesModule:Logout (Sequence Diagram)

This diagram shows what happens when the user logs out. The GUI calls all of the
InstallableModule objects’ loggedOut() methods, but the GUIResourcesModule currently
does nothing during logout.

GUIResourcesModule

loggedOut

The module performs no
work at logout.

Figure 132. GUIResourcesModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-179 11/20/00

3.11.2.5 GUIResourcesModule:Shutdown (Sequence Diagram)

This diagram shows what happens when the GUI shuts down. The GUI calls all of the
InstallableModule objects’ shutdown() methods, and the GUIResourcesModule uses this
method to disconnect itself from the ORB.

®)

GUIResourcesModule

'U
>

GUI

shutdown———=>

deactivate_object S
(ResourcePushReceiver)

Figure 133. GUIResourcesModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-180 11/20/00

3.11.2.6 GUIResourcesModule:Startup (Sequence Diagram)

This diagram shows the steps taken to initialize the GUIResourcesModule. At startup time,
the GUI calls the startup method in each of the installable modules. When the

GUIResourcesModule startup is called, the ORB connections are made in order to receive
the Resource events from the server.

O
BE POA
GUIResourcesModule
GUI
—startup—=>}
——Ccreate—> Resource
PushReceiver
get
getPOA activate_object
(ResourcePushReceiver) Z

Figure 134. GUIResourcesModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-181 11/20/00

3.12 GUITrafficEventModule

3.12.1 Class Diagrams

3.12.1.1 GUITrafficEventModuleClasses (Class Diagram)

This diagram shows the overall architecture of the GUITrafficEventModule. The utility
classes and dialogs are shown on other diagrams. The GUIResponseParticipation class
hierarchy is in the GUITrafficEventModuleUTtilityClasses diagram due to a lack of space on
this diagram.

GUITrafficEvent e,
rafficEvent PushConsumer

getTabPanes() : TabPanelnfo[]
createEventData() : BasicEventData
getEventData() : BasicEventData
getValidParticipantTypes() : int]]
cleanup() : void
open(TrafficEventFactory, BasicEventData) : void ‘ InstallableModule

% 1 1
GUIRoadwayEvent . .

GUITrafficEventModule

CommLog TrafficEvent

o
N

4 LaneConfiguration |, ;
Lane[] m_lanes < get() : GUITratficEventModule X
getLanes():Lane[] o r) fT actoryl]
aneCon kY
GUlIncident GUISpecialEvent GUIActionEvent nndAssocwancn(event\gfri‘vmeﬁE%Z) :
TrafficEventAssociation

P D Data,
Gl er GUID GUICongestionEvent TrafficEventID) : void

1
‘ GUIPlannedRoadwayClosure ‘ ResponseDataCreator T
GUIResponsePlanitemCreator

createResponsePlankemData()
sePlanttemD:
getResponseTargetD) Gentiior

createGUIRes| ponsePlamtem(Identifier, name,

TAD & et Cleps i

GUIResp!

GUICommLog ‘ GuIbmMS ‘

‘ GUIHAR ‘

a5

CommLog CommLogClient |

‘GU“" HGUL.H.‘ ‘ /
get() : GUICommLog
addEntry(LogEntry) : void ‘ GUIDMSModule
getEntries() : LogEntry[l
entryAdded(LogEntry) : void

‘ GUIHARModule

addCommLog(CommLog) : void 1
1 GUITrafficEventHolder
GUIResponse
Participation
; doProperties() 1 .
A 1 selTrafﬂcEvem(TraﬂlcEvenl BasicEventData) m_eventHolder
addLogEntry(String)
addLogEntries(LogEntry[]) 1 1 Data(Data
getvalidParticipantTypes() : il <3 setNotified(boolean) : void
D ipan) overrdeNolficatonTime(Date) : void
D) : GUIResp
* ITrafficEvent datachanged(Responsepamcupauonoma) : void
s e Tr_?m?vaEem,, yl getEvent() : GUITrafficEventHolder
X i i changeType(int) : TrafficEvent cleanup() : void
NavTreeDisplayable TrafficEventAssociation ., Dat) PO
addRespcnseP lanitem (ResponseDataCreator)
m_idl Speny
m_id2 close() 1
B ovemdet:lcsme'nme(nale) < TrafficEvent

getClosureTime() : Date
NavTreeFilt executeResponse()
lavTreeFilter getAssociatedEvents() : GUITrafficEvent]] 1+
addPlanToResponse(GUIPIan) : void LogEntry
setlaneConfiguration(LaneConfiguration) : void

.| getHistory(LogFilter) : LogEntry[]

eventRemoved()
logEntriesAdded(LogEntry[]) i N
eveniClosed(BasicEventData) cu
eventStateChanged(BasicEventData)
N laneConfigurationChanged(LaneConfiguration)
EventNavGroup EventNavFilter [ypeChanged(TramcEvent BasicEventData)
responsePlanttem Modmed(p\an temName, ID, doProperties() : v
ResponsePlanitemData) gelRespcnseTavgenD() Identifier
createEvent(eventType, LogEntry[]) setStillOpenQualifier() respcnsePIan\temsRemoved(\denmer[]) 4 execute() : void
responsePlanitemStatusChanged(itemiD, stateDesc, | cleanup() : void
isActive, hasBeenExecuted) getitemData() : ResponsePlanitemData
D setitemData(ResponsePlanitemData) : void
D ticipation)

NavListDisplayable GU\H';A‘R;nR‘?es;onse o o o
Figure 135. GUITrafficEventModuleClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-182 11/20/00

3.12.1.1.1 CommL.og (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART Il system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.12.1.1.2 CommL.og PushReceiver (Class)

This class will receive and handle any CORBA events that are pushed by a server via the
CORBA event service. This class will listen specifically for CORBA events sent through
the Comm Log event channel.

3.12.1.1.3 CommLogClient (Class)

This class is a wrapper to be used by clients of the Communications Log. It provides
services such as discovering instances of the CommLog in the trader and caching entries to
the comm log that are added when the comm log is not available.

3.12.1.1.4 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.12.1.1.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.12.1.1.6 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.12.1.1.7 GUIResponse Participation (Class)

This class represents one instance of a participant (person, mobile unit, device, resource, or
response team) being notified and involved in the response to an event. This is a wrapper

R1B2 GUI Detailed Design Rev. 0 3-183 11/20/00

object which wraps a ResponseParticipation CORBA interface object, caches the CORBA
object’s data, and/or adds GUI-specific functionality.

3.12.1.1.8 EventNavFilter (Class)

This Navigator filter allows the user to filter the Traffic Events shown in the Navigator
based on Traffic Event-specific criteria. For example, it allows them to view events that
were opened and/or closed at specified times. (Note: events that have been removed from
the system are not available to be filtered and will not be displayed in the navigator
regardless of the dates given in the filter).

3.12.1.1.9 EventNavGroup (Class)

This class is a singleton Navigator filter that shows all of the GUITrafficEventHolder
objects in the system, and provides functionality so that the user can right click on the
Navigator group to create a new traffic event in the system.

3.12.1.1.10 GUICongestionEvent (Class)

This is a wrapper class that wraps the CongestionEvent CORBA interface. It will cache the
CongestionEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a CongestionEvent.

3.12.1.1.11 GUIDisabledVehicleEvent (Class)

This is a wrapper class that wraps the DisabledVehicleEvent CORBA interface. It will
cache the DisabledVehicleEvent data and supply any type-specific GUI functionality
related to the TrafficEvent being a DisabledVehicleEvent.

3.12.1.1.12 GUIHARResponse Planltem (Class)

This class provides a GUI “wrapper” object that is used to wrap a ResponsePlanltem
CORBA interface that contains HAR-specific data and to supply GUI-specific
functionality.

3.12.1.1.13 GUlIncident (Class)

This is a wrapper class that wraps the Incident CORBA interface. It will cache the Incident
data and supply any type-specific GUI functionality related to the TrafficEvent being an
Incident.

3.12.1.1.14 GUIResponsePlanltem (Class)

This is a base class for the GUI wrapper object that is used to wrap a ResponsePlanltem.
The ResponsePlanltem represents a proposed action to perform on a target object in
response to a TrafficEvent. This wrapper object adds GUI-specific functionality to the
response plan item.

R1B2 GUI Detailed Design Rev. 0 3-184 11/20/00

3.12.1.1.15 GUIResponsePlanltemCreator (Class)

This interface is used to enable the creation of specific types of GUIResponsePlanltem
wrapper objects depending upon which type of ResponsePlanitem is being wrapped. Any
class wishing to create GUIResponsePlanltems must implement this interface and add
themselves to the GUITrafficEventModule at GUI startup time. When the
GUITrafficEventModule discovers a ResponsePlanltem or catches a CORBA event
indicating that a new response plan item has been created, it will call each known
GUIResponsePlanltemCreator to give it an opportunity to create a specific type of GUI
wrapper object.

3.12.1.1.16 GUIRoadwayEvent (Class)

This class extends the GUITrafficEvent class, adding any functionality that may be specific
to the event being located on a roadway.

3.12.1.1.17 GUITrafficEventHolder (Class)

This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.12.1.1.18 GUITrafficEventModule (Class)

This class is an installable module within the GUI’s module framework. It provides the
framework for all of the CHART Traffic Event and Comm Log functionality to be launched
from the GUI. There can be at most one instance of a GUITrafficEventModule object
within the GUI.

3.12.1.1.19 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.12.1.1.20 ResponseDataCreator (Class)

This interface enables the creation of type-specific ResponsePlanltemData objects, which
are used for creating the appropriate type of ResponsePlanltem. An object implementing
this interface can be added to the response plan of a traffic event. Implementers of this
interface include plan items and response devices.

R1B2 GUI Detailed Design Rev. 0 3-185 11/20/00

3.12.1.1.21 GUIActionEvent (Class)

This is a wrapper class that wraps the ActionEvent CORBA interface. It will cache the
ActionEvent data and supply any type-specific GUI functionality related to the TrafficEvent
being an ActionEvent.

3.12.1.1.22 GUIPlannedRoadwayClosure (Class)

This is a wrapper class that wraps the PlannedRoadwayClosure CORBA interface. It will
cache the PlannedRoadwayClosure data and supply any type-specific GUI functionality
related to the TrafficEvent being a PlannedRoadwayClosure.

3.12.1.1.23 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu
items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.12.1.1.24 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.12.1.1.25 GUITrafficEvent (Class)

This class is a base class for the wrappers that wrap the TrafficEvent CORBA interface.
The implementing object will exist from when the TrafficEvent is created until the GUI is
shut down, the TrafficEvent type is changed, or the TrafficEvent is removed from the
system. The class may cache the TrafficEvent data, and italso provides GUI functionality
for the specific type of TrafficEvent.

3.12.1.1.26 GUISafetyMessageEvent (Class)

This is a wrapper class that wraps the SafetyMessageEvent CORBA interface. It will cache
the SafetyMessageEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SafetyMessageEvent.

R1B2 GUI Detailed Design Rev. 0 3-186 11/20/00

3.12.1.1.27 GUIWeatherServiceEvent (Class)

This is a wrapper class that wraps the WeatherServiceEvent CORBA interface. It will cache
the WeatherServiceEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a WeatherServiceEvent.

3.12.1.1.28 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in

the history of the specific Traffic Event.

3.12.1.1.29 NavL.istDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.12.1.1.30 GUISpecialEvent (Class)

This is a wrapper class that wraps the SpecialEvent CORBA interface. It will cache the
SpecialEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SpecialEvent.

3.12.1.1.31 TrafficEvent (Class)

Obijects of this type represent traffic events that require action from system operators.

3.12.1.1.32 NavTreeFilter (Class)

This class serves as a node in the Navigator tree and filters objects to be displayed in the
Navigator. It is an observer to the DataModel so that it can create the
NavTreeFilteredObjectinstance objects for any NavTreeDisplayables that it contains.
(Multiple instances can appear to represent one NavTreeDisplayable object). Filters can be
cascaded to achieve a cumulative filtering effect; that is, a filter appearing under a parent
filter will call the parent filter first to filter the objects, and then it will apply its own
filtering method. The cascading of filters is therefore an “AND” operation. A filter can
either be a system filter or a user-specific filter. System filters can only be modified by
someone with the correct administrative rights, and they can only be added as a child of
other system filters.

3.12.1.1.33 GUICommL.og (Class)

This class is a wrapper for the CommLog CORBA interface object, and provides the GUI
functionality for interacting with the Comm Log. No more than one instance of a
GUICommLog object will exist within the GUI.

R1B2 GUI Detailed Design Rev. 0 3-187 11/20/00

3.12.1.1.34 GUIDMSStoredMsgltem (Class)

This class is a GUI “wrapper” object that is used to wrap a Planltem object which contains
the DMSPlanltemData. It helps in the creation of a DMS plan item data using the
DMSStoredMsgltemProperties object.

3.12.1.1.35 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.12.1.1.36 TrafficEventAssociation (Class)

This object is used to denote an association between two TrafficEvent objects. It stores only
the IDs of the TrafficEvent objects because traffic event objects can be removed from the
system, in which case the reference to the removed object would cause problems. The
association object is separate to reduce complexity of maintaining bidirectional references
between the events.

3.12.1.1.37 GUIDMS (Class)

This class is a GUI “wrapper” object that is used to wrap a CHART2DMS object. This is an
abstract class that needs to be extended by the GUI DMS model specific classes.

3.12.1.1.38 GUIDMSModule (Class)

The GUIDMSModule is an installable module in the GUI that handles all of the DMS
specific functionality. Only one GUIDMSModule object may exist within the GUI. This
class implements the interfaces to support the frameworks of the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule. It handles the creation of model
specific GUI DMS objects using the model supporters.

3.12.1.1.39 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.12.1.1.40 TrafficEvent PushReceiver (Class)

This class will receive and handle any CORBA events that are pushed by a server via the
CORBA event service. This class will listen specifically for CORBA events sent through
the Traffic Event event channel.

3.12.1.1.41 GUIHAR (Class)

This class provides a GUI “wrapper” object that is used to wrap the CHART2HAR
CORBA interface and to supply GUI-specific functionality.

R1B2 GUI Detailed Design Rev. 0 3-188 11/20/00

3.12.1.1.42 GUIHARModule (Class)

The GUIHARMOodule is an installable module in the GUI, and provides all functionality
specific to HAR and SHAZAM control. It requires that the GUIPlanModule, the
GUILibraryModule, and the GUITrafficEventModule all be installed. Only one
GUIHARModule object may exist within the GUI. This class implements the interfaces to
support the frameworks of the GUIPlanModule, the GUILibraryModule, and the
GUITrafficEventModule.

3.12.1.1.43 GUIHARStoredMsgltem (Class)

This class provides a GUI “wrapper” object that is used to wrap the HARStoredMsgltem
CORBA interface and to supply GUI-specific functionality.

R1B2 GUI Detailed Design Rev. 0 3-189 11/20/00

3.12.1.2 GUITrafficEventModuleUtilityClasses (Class Diagram)

This diagram shows the utility classes used in the GUITrafficEventModule, as well as the
GUIResponseParticipation hierarchy, which would not fit on the GUITrafficEventClasses

diagram.
:

EventTypeChangeHint EventLogSearcher CommLogSearcher e A
LogEntriesFound SearchError
m’?feﬂgmcewm Command Command
m_newEventData Eventl i CommL ogFilter,
LogFilter, SearchListener) : void SearchListener) : void
1 1 getLogEntries() : LogEntry[] | | 9etErrorMessage() : String
1 1

LogSearchListener

searchEntriesReturned(LogEntry[])
errorReturned(String)

GUIResponse
Participation

m_eventHolder

4 Data() : Respor Data | 4 1] Response
setNotfied(hoolean) : void Participation
overrideNoiificationTime(Date) : void

remove() : void
dataChanged(ResponseParticipationData) : void
Ider

getEvent() : GUITrafficEventHolder
cleanup() : void

GUIOrganization

Participation
: :

setRespondedToEvent(boolean) : void
overrideRespondedTime(Date) : void

GUIResource :
Deployment 1 1| Resource
D

setArrivedOnScene(boolean) : void
setDepartedFromScene(boolean) : void
overrideArrivalTime(Date) : voi
overrideDepartureTime(Date) : void

Figure 136. GUITrafficEventModuleUtilityClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-190 11/20/00

3.12.1.2.1 CommlLogSearcher (Class)

This class provides functionality for starting an asynchronous search of the communications
log.

3.12.1.2.2 EventLogSearcher (Class)

This class provides functionality for starting an asynchronous search of the traffic event’s
log.

3.12.1.2.3 EventTypeChangeHint (Class)

This hint object contains the information necessary to substitute a new TrafficEvent for an
old TrafficEvent when the type of the traffic event changes.

3.12.1.2.4 GUIOrganization Participation (Class)

This GUI wrapper object wraps an OrganizationParticipation CORBA object and adds
GUI-specific functionality. It represents an organization participating in the response to a
traffic event.

3.12.1.2.5 GUIResource Deployment (Class)

This GUI wrapper object wraps a ResourceDeployment CORBA object and adds GUI-
specific functionality. It represents an instance of a resource that has been deployed to
respond to a traffic event.

3.12.1.2.6 GUIResponse Participation (Class)

This class represents one instance of a participant (person, mobile unit, device, resource, or
response team) being notified and involved in the response to an event. This is a wrapper
object which wraps a ResponseParticipation CORBA interface object, caches the CORBA
object’s data, and/or adds GUI-specific functionality.

3.12.1.2.7 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.12.1.2.8 java.lang.Thread (Class)

This class represents a java thread of execution.

R1B2 GUI Detailed Design Rev. 0 3-191 11/20/00

3.12.1.2.9 LogSearchListener (Class)

This interface will allow the implementing class to receive log entries from an
asynchronous log search as the search progresses. It also is used to report error messages if

the search fails.

3.12.1.2.10 LogEntriesFound Command (Class)

This runnable is used to communicate that log entries have been found during an
asynchronous search.

3.12.1.2.11 Organization Participation (Class)

This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

3.12.1.2.12 Resource Deployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.12.1.2.13 Response Participation (Class)

This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.12.1.2.14 SearchError Command (Class)

This Runnable is used to indicate that an error occurred while processing an asynchronous
search.

3.12.1.2.15 UpdateHint (Class)

This interface must be implemented by all objects that are to be used as update hints. An
update hint is a concept that is negotiated between a (subject) object and observers that are
interested in that object. The data model makes no assumptions about how the hints will be
used. The data model will invoke the isEqual method of the update hint to ask it to
determine if it is equivalent to another hint. This allows the model to perform update
optimizations by not sending notification to observers of two updates with equivalent hints
in the same period. An example of how an update hint would be used follows: A DMS
object has state variables that track the current message being displayed and the current
latitude and longitude location of the sign controller. Because the system map requires
significant processing load to redraw and needs only be notified if the latitude or longitude
of the DMS changes the DMS and map view use a DMSMapChange hint. When the DMS
object has a state change to the latitude or longitude property to report, that change is
reported by calling objectUpdated and passing a DMSMapChange hint. When it has other
changes which are not state changes to the latitude or longitude properties, it reports those

R1B2 GUI Detailed Design Rev. 0 3-192 11/20/00

changes to the DataModel by calling objectUpdated passing a DMSNonMapChange update
hint. The map view will only redraw the DMS if the ObjectUpdate contains a
DMSMapChange hint.

R1B2 GUI Detailed Design Rev. 0 3-193 11/20/00

3.12.1.3 EventDialogs (Class Diagram)

This diagram shows the dialogs and GUI components that will be used to display the traffic
event data, and it also shows which components are used for each type of traffic event.
I]

TabPanelnfo DefaultJFrame
Droppable
m_component
m_tabName
4 . CommLogDialog EventNavFilter
EventDialog PropertiesDialog
GUIModelObserver <}
m_eventHolder >

m_trafficEvent

. 1 1 | EventDialog(GUITrafficEventHolder,
GUITrafficEventHolder GUTrafficEvent)

-changeEventType(oldEvent, newEvent)

1
LogPanel javax.swing.
JTabbedPane
1 LogSearchListener
! & SRRV
EventTabbedPane
1+ TrafficEvent CommLog
: java.awt. SearchDialog SearchDialog
BasicEventPanel Component
GUIRoadwayEvent
4 upd icEventData)
IncidentPanel IncidentVehiclePanel
1 1
1 update(IncidentData) update(IncidentVehicleData)
RoadConditionsPanel

update(RoadConditionsData)

GUlIncident

"] ParticipationPanel

GUIWeatherServiceEvent 1 m_eventiD

1
1~ LaneConfigurationPanel

1
1

F1
GUIWeatherSensorEvent 1
_ :

1 | update(LaneConfiguration)

DisabledVehiclePanel

|

GUIDisabledVehicleEvent

update(DisabledVehicleData)

GUIPlannedRoadwayClosure

/

1 ActionEventPanel
GUIActionEvent ['1 1

!

update(ActionEventData)

GUICongestionEvent

GUISafetyMessageEvent

Figure 137. EventDialogs (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-194 11/20/00

3.12.1.3.1 ActionEventPanel (Class)

This JPanel will contain controls for specifying data specific to ActionEvents.

3.12.1.3.2 BasicEventPanel (Class)

This JPanel will contain the controls for entering data that is common to all traffic events.

3.12.1.3.3 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.12.1.3.4 DisabledVehiclePanel (Class)

This JPanel will contain controls for specifying data specific to DisabledVehicleEvents.

3.12.1.3.5 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.12.1.3.6 TabPanelnfo (Class)

This simple structure contains the information necessary to add a page to a JTabbedPane.

3.12.1.3.7 CommlL.og SearchDialog (Class)

This dialog allows the user to search the entries in the communications log for entries that
fit the user defined search criteria.

3.12.1.3.8 CommLogDialog (Class)

This dialog is the GUI interface that allows the user to view, add, and search the entries in
the communications log.

3.12.1.3.9 EventTabbedPane (Class)

This JTabbedPane will contain the panels specific to the type of traffic event.

3.12.1.3.10 javax.swing. JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a
certain page.

R1B2 GUI Detailed Design Rev. 0 3-195 11/20/00

3.12.1.3.11 EventDialog (Class)

This is the main dialog for managing a traffic event. It will contain a tabbed pane that will
allow the user to change information about the event or activate a response plan for the
traffic event. The type of panels displayed in the tabbed pane depends on the type of event.
If the type of the event is changed, the tabbed pane will be updated to display the correct
panels for the new type of event.

3.12.1.3.12 GUIActionEvent (Class)

This is a wrapper class that wraps the ActionEvent CORBA interface. It will cache the
ActionEvent data and supply any type-specific GUI functionality related to the TrafficEvent
being an ActionEvent.

3.12.1.3.13 GUICongestionEvent (Class)

This is a wrapper class that wraps the CongestionEvent CORBA interface. It will cache the
CongestionEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a CongestionEvent.

3.12.1.3.14 GUISafetyMessageEvent (Class)

This is a wrapper class that wraps the SafetyMessageEvent CORBA interface. It will cache
the SafetyMessageEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SafetyMessageEvent.

3.12.1.3.15 GUITrafficEvent (Class)

This class is a base class for the wrappers that wrap the TrafficEvent CORBA interface.
The implementing object will exist from when the TrafficEvent is created until the GUI is
shut down, the TrafficEvent type is changed, or the TrafficEvent is removed from the
system. The class may cache the TrafficEvent data, and italso provides GUI functionality
for the specific type of TrafficEvent.

3.12.1.3.16 GUIDisabledVehicleEvent (Class)

This is a wrapper class that wraps the DisabledVehicleEvent CORBA interface. It will
cache the DisabledVehicleEvent data and supply any type-specific GUI functionality
related to the TrafficEvent being a DisabledVehicleEvent.

3.12.1.3.17 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

R1B2 GUI Detailed Design Rev. 0 3-196 11/20/00

3.12.1.3.18 GUIPlannedRoadwayClosure (Class)

This is a wrapper class that wraps the PlannedRoadwayClosure CORBA interface. It will
cache the PlannedRoadwayClosure data and supply any type-specific GUI functionality
related to the TrafficEvent being a PlannedRoadwayClosure.

3.12.1.3.19 GUISpecialEvent (Class)

This is a wrapper class that wraps the SpecialEvent CORBA interface. It will cache the
SpecialEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a SpecialEvent.

3.12.1.3.20 GUITrafficEventHolder (Class)

This object represents a TrafficEvent and provides GUI functionality for the TrafficEvent.
This class contains generic data and operations that apply to any type of TrafficEvent. It
also “holds” a type-specific GUITrafficEvent. If the type of the TrafficEvent is changed, the
old GUITrafficEvent object (stored within this “holder” class) will be switched out for a
new GUITrafficEvent of a different type, but the GUITrafficEventHolder will remain in
existence.

3.12.1.3.21 IncidentVehiclePanel (Class)

This JPanel will contain controls for specifying the quantity and type of vehicles involved
in an Incident.

3.12.1.3.22 LogPanel (Class)

This JPanel will contain the log component for the traffic event.

3.12.1.3.23 GUIWeatherSensorEvent (Class)

This is a wrapper class that wraps the WeatherSensorEvent CORBA interface. It will cache
the WeatherSensorEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a WeatherSensorEvent.

3.12.1.3.24 GUIWeatherServiceEvent (Class)

This is a wrapper class that wraps the WeatherServiceEvent CORBA interface. It will cache
the WeatherServiceEvent data and supply any type-specific GUI functionality related to the
TrafficEvent being a WeatherServiceEvent.

3.12.1.3.25 ParticipationPanel (Class)

This JPanel will contain controls for specifying the state of the participations for any

R1B2 GUI Detailed Design Rev. 0 3-197 11/20/00

resources, mobile units, special needs teams, or external organizations that may be
participating in the response to the traffic event.

3.12.1.3.26 EventNavFilter PropertiesDialog (Class)

This dialog allows the user to modify the properties of an EventNavFilter navigator filter.

3.12.1.3.27 GUIIncident (Class)

This is a wrapper class that wraps the Incident CORBA interface. It will cache the Incident
data and supply any type-specific GUI functionality related to the TrafficEvent being an
Incident.

3.12.1.3.28 IncidentPanel (Class)

This JPanel will contain controls for editing the data specific to Incident events.

3.12.1.3.29 GUIRoadwayEvent (Class)

This class extends the GUITrafficEvent class, adding any functionality that may be specific
to the event being located on a roadway.

3.12.1.3.30 java.awt. Component (Class)

This class is the base class for all graphical user interface components such as buttons and
panels.

3.12.1.3.31 java.awt.event. ItemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list
item or combo box item.

3.12.1.3.32 LaneConfigurationPanel (Class)

This JPanel will contain controls for specifying the lane configuration and also the blockage
state of each lane within that configuration.

3.12.1.3.33 LogSearchListener (Class)

This interface will allow the implementing class to receive log entries from an
asynchronous log search as the search progresses. It also is used to report error messages if
the search fails.

3.12.1.3.34 RoadConditionsPanel (Class)

This JPanel will contain controls for specifying the conditions of the road surface related to
a traffic event.

R1B2 GUI Detailed Design Rev. 0 3-198 11/20/00

3.12.1.3.35 TrafficEvent SearchDialog (Class)

This dialog allows the user to search the entries in the traffic event’s log for entries that fit
the user defined search criteria.

R1B2 GUI Detailed Design Rev. 0 3-199 11/20/00

3.12.2 Sequence Diagrams
3.12.2.1 GUITrafficEventModule:AddCommLogEntry (Sequence Diagram)

This diagram shows how a user adds an entry to the Communications Log. The user
invokes the Comm Log dialog from the GUI toolbar or by a hot key. The dialog attaches
itself to the DataModel to be updated when any new entries are added, and queries the
current entries from the GUICommLog wrapper. When the user enters a line in the Comm
Log and hits the Enter key, the dialog calls the GUICommLog, which calls the CommLog
CORBA interface to add the entry. An event will be pushed by the server through the
Comm Log event channel and the GUI will be updated; otherwise, the error will be
displayed in the dialog.

o

u;se:r GUICommLog Gul CommLogClient DataModel
[invokes dialog from
toolbar}
“.actionPerformed
b —create—> CommLogDialog
> get
This menu item will getDataModel
be disabled if the user it
does not have rights. getEntries attachObserver
[view rights only]
"Disable All
Editing Features"
show———>}
[user presses the Enter key]
keyPressed
addEntry——
get If successful, the new
Tol log entry will be pushed back
getToken— through the Comm Log event
ddEnt channel and then will be added
addentry T to the GUICommLog. See
[no rights] ~--{ the diagram
AccessDenied HandleEventCommLogEntryAdded
[other error] for details.
CHART2Exception
[error]
GUIException
[error]
"Display Error"
[error]
[closes dialog]
-
closeWindow
e 1
get
getDataModel
detachObserver

Figure 138. GUITrafficEventModule:AddCommLogEntry (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-200 11/20/00

3.12.2.2 GUITrafficEventModule:AddDeviceToResponse (Sequence Diagram)

This diagram shows how a device is added to a response plan. Any GUI wrapper of a
response device must implement the ResponseDataCreator interface, which will be called to
create a ResponsePlanltem for the device. See the sequence diagram:
AddResponsePlanltem for details.

See the sequence diagram "AddResponsePlanitem” for details.
(All response devices will implement the ResponseDataCreator interface,
which will allow them to be added to the response plan.)

Figure 139. GUITrafficEventModule:AddDeviceToResponse (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-201 11/20/00

3.12.2.3 GUITrafficEventModule:AddEvent (Sequence Diagram)

This diagram shows how a traffic event is added to the system from the GUI. The operator
chooses “New Incident” (or another type of event) from the EventNavGroup’s context
menu, or clicks on one of the buttons to create an event from the Comm Log dialog. (If the
event is created from the Comm Log, the event will be initialized with any selected log
entries). The EventNavGroup creates a GUITrafficEventHolder and a GUITrafficEvent
object and calls doProperties() on the GUITrafficEventHolder to display the EventDialog.
The dialog initializes the tab panes by calling the GUITrafficEvent, which passes back the
correct tab panes corresponding to the specific type of the traffic event. It also gets the
available traffic event factories, which will allow the user to choose which factory to use.
The dialog is then displayed. As the user types in the dialog, the dialog will validate the
input and enable the “Open Event” button when the required data has been entered for
opening the traffic event (i.e., adding it to the System). When the user clicks on “Open
Event”, the dialog calls the GUITrafficEvent to create the a specific type of BasicEventData
object (depending on the type of GUITrafficEvent) and retrieves all of the data from the
event-type-specific panels by passing the BasicEventData to the panels to have them fill in.
The dialog will then call the GUITrafficEvent to open the event. It will try to call the
selected TrafficEventFactory, or if none was selected, it will try to call each of the
TrafficEventFactory objects until a TrafficEvent is successfully created. A TrafficEvent is
returned synchronously from the factory and is set into the GUITrafficEvent wrapper. The
GUITrafficEventHolder and GUITrafficEvent wrappers are then added to the DataModel so
that the GUI can tell that the wrapper objects already exist when the corresponding CORBA
event is pushed by the server and received by the GUI. (This allows the EventDialog to
remain open because the GUI can retain the reference to the GUITrafficEventHolder object
for future use and can therefore ignore the CORBA event; otherwise, a new
GUITrafficEventHolder object would be created for the same traffic event when the
CORBA event is handled.) For all other GUIs, the CORBA event will not be ignored and a
new GUITrafficEventHolder will be created. See the sequence diagram:
HandleEventEventAdded for more details on the handling of the CORBA event.

R1B2 GUI Detailed Design Rev. 0 3-202 11/20/00

X

Operator [glicks on T The actual type of the
g rafficEvent
New incident’ et 7>, object will depend on the
reateEvent(eventType, type code passed in
logEntries)
— -

Traffic
EventFactory

GUTTraffic
EventModule

Gul DataModel

5)

i__create.
(eventType)
An event may creat The panels created
also be created wouid be all of the
from the Comm Log. panels necessary to
Log Entries may be P display the data.
passedif create. EventDialog pertaining to the
createEvent() is [(GUMrafficEvent) specific type of event.
called from the getTaPanes ,,
= 21 [for each i
| applicable_s| 255aner
] ic.-TabPanelnfof] - 5?9";2
The menu item "Add the
will be disabled components”
if the user does e
not have rights. get
g

[* for each factory]
getNam

["cancel” clicked]

actionPerformed
closeWindow

The panels will
be set up as
keyListeners (or
whatever type of

user types key input listener is This will actually be a

KeyPressed | appropriate) if derived object, depending

input validation is on what type of event
required itis.

[* for each panel containing
required data]
" Data"

—

[Data valid
for opening]
“Enable Open

Event Button”
bl

[clicks on "Open Event’].

actionPerformed —createData—>{
creater Data

[* for each reqired panel].
"Get Data"

v A
"“Get Selected Factory"

open(Selected
Factory,
Data) g
getToken
[no factory selected]
getEventFactories
getEventType If successful, this will N
[P— i cause a TrafficEventAdded
i event to be pushed by the server.
c However, it will be ignored in this
sy soeea o ulbcsiegerecong o
A o) “AccessDenied the GUITrafficEventHolder an
[* for next factory] other error] GUTTrafficEvent to the DataModel
[I— CHART2Exception: soon.
____emror]__
N GUiExceptio
—
[error]
"Display Error”
[error} T
etTr 3
I folder)

rest of the GUI to become
aware of the traffic event.

" This will cause the D1

Figure 140. GUITrafficEventModule:AddEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-203 11/20/00

3.12.2.4 GUITrafficEventModule:AddPlanltemToResponse (Sequence Diagram)

This diagram shows how a plan item is added to a response plan. The GUIPlanltem objects
will implement the ResponseDataCreator interface, which will be called to create a
ResponsePlanitem for the plan item. See the sequence diagram: AddResponsePlanitem for
details.

See the sequence diagram: "AddResponsePlanitem” for details.
(Each GUIPlanitem will implement the ResponseDataCreator interface,
which will allow them to be added to the response plan.)

Figure 141. GUITrafficEventModule:AddPlanltemToResponse
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-204 11/20/00

3.12.2.5 GUITrafficEventModule:AddPlanToResponse (Sequence Diagram)

This diagram shows how a Plan is added to a Response Plan for an event. The user drags
and drops the GUIPIan object onto the GUITrafficEventHolder object. The
GUITrafficEventHolder then gets the items from the GUIPlan and for each one, calls it to
create its specific type of ResponsePlanitemData for its specific type of plan item. Then the
GUITrafficEventHolder calls the TrafficEvent to add the response plan item. If successful,
the server will push a CORBA event through the TrafficEvent channel. See the sequence
diagram: HandleEventResponsePlanltemAdded for details of the handling of this event. If
an error occurs, a CommandsStatus object will be created so that the failure will appear in
the Command Failures window.

Command
Status

Command
Status
% GUITrafficEventHolder — GUPlantem Gu TrafficEvent Handler
Operator
The user may also be able to drag plans
to other objects such as the EventDialog
or the traffic event object in the navigator,
[—{arags ofiect ovoreventl— | but they wil all delegate this funcionaliy
to the GUITrafficEventHolder object.
[not GUIPlan]
[<-—"Return drag permission for---
other types of objects”
lc.[no rights or event closed].____
"Reject Drag"
J&------=---"Accept Drag'"--
The specific type of
ResponsePlanitemData
| __[drops GUIPlanonevent] that will be created
handleDrop — depends on which type
of plan item i
addPlanToResponse is called to create it.
get
create
getltem
lanitemD:
Planitem
i —creat ResponsePlanitemData
| If successful, the
addResponsePlanitem server will push a
ResponsePlanttemAdded
event. See the diagram:
o for details.
tTokenr
-addResponsettem
« [no rights]
Lz, ebnibines

[event under control of
another op center and,

no override rights]
ResourceControlConflict

[event closed or other error]
CHART2Exception

[error]
UIEX(

or failure

eason)

Figure 142. GUITrafficEventModule:AddPlanToResponse (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-205

11/20/00

3.12.2.6 GUITrafficEventModule:AddResponseParticipation (Sequence Diagram)

This diagram shows how the user records a participation in reponse to an event. When the
EventDialog is initialized, the ParticipationPanel will get the valid participant types from
the GUITrafficEventHolder and will get the ResponseParticipant objects from the
GUIOperationsCenter corresponding to the operations center where the user is logged in.
Each participant of a type applicable to the current GUITrafficEvent will be added to the
combo box. When the user chooses a response participant to participate in the event, the
ParticipationPanel will call the GUITrafficEventHolder to create a
ResponseParticipationData object (which will actually be a derived type depending on the
type of participant that was chosen). The GUITrafficEventHolder will then call the
TrafficEvent to add the response participation on the server side. If the participation is
successfully added, the server will push out an event and the participation will be added as
a row in the ParticipationPanel. See the sequence diagram:
HandleEventResponseParticipationAdded for details. If the user types in a mobile unit that
is not one of the units at the operations center, the ParticipationPanel will first check that
mobile units are supported by the event type. If so, it will call the GUIOperationsCenter
corresponding to the operations center where the user is logged in and ask it to add a
response participant. If this is successful, the ParticipationPanel adds the participation as
described above. An event will also be pushed by the server if a new participant is added to
the OperationsCenter, so that other GUIs will also see the new participant.

R1B2 GUI Detailed Design Rev. 0 3-206 11/20/00

The details of the
creation and initialization

of the Event Dialog are not
shown here, except for the
parts pertaining to
Response Participation.

X

Figure 143. GUITrafficEventModule:AddResponseParticipation
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-207

Partcipation GUOperalions Operations GUMrafficEvent
50 Panel ~enet Center Holder Gul GUITrafficEvent
[opens event dialog]
|—"Initialize ——>;
g pantType:
g Types
g P N
The valid participant types
D will be hard coded into each
type of event class.
[* for each participant
matching the
appropriate types]
"Add To Combo Box"
[clicks on combo box
|__to add participant]
itemStateChanged
" ate The actual class created
P%SC‘%" will be the one corresponding
—m‘:a— to the type of the participant
get—> Data selected and passed in. (ie., a
i) Data
——getToken or ResourceDeploymentData
object will be created)
ponse
[no rights]
AccessDenied
[event under control of another
i<-—-—-op center and no override rights}-—-
ResourceConflict B
i [event closed or other error]_ m{‘;ﬁ:ﬁ;’““ the server
CHART2E; l |
o S xception ResourceDeploymentAdded or
P! OrganizationParticipationAdded
[error] event on the traffic event channel.
| "Display Error .
[error}
[types in combo box
to add a CHART unit
—and hits return]
keyPressed
g pantTyps g
[CHART Unit participants;
Tor s e) [CHART Unit does not exist]
create
D ticipant
get
getToken:
addEligible.
ResponseParicpant ™}
[no rights]._.
AccessDenied
i..[other error If successful, the
ferror]. HART2ExCe] server will push a
GUIException ResponseParticipantAdded
event.
[error]
“Display Error"
[error}
" create
get
——getToken
ponsg
[no rights]
AccessDenied
[event under control of another
i<——op center and no override rights}-—
ResourceControlConflict
_[event closed or other error]
[error] CHART2Exception
GUIException i
—
[error]
“Display Error"
[error}

11/20/00

3.12.2.7 GUITrafficEventModule:AddResponsePlanitem (Sequence Diagram)

This diagram shows how a Response Plan Item is added to an event’s Response Plan. The
user drags and drops a ResponseDataCreator object onto the GUITrafficEventHolder
object. The GUITrafficEventHolder then calls it to create its specific type of
ResponsePlanltemData for the specific type of ResponseDataCreator. Then the
GUITrafficEventHolder calls the TrafficEvent to add the response plan item. If successful,
the server will push a CORBA event through the TrafficEvent channel. See the sequence
diagram: HandleEventResponsePlanltemAdded for details of the handling of this event. If
an error occurs, a CommandsStatus object will be created so that the failure will appear in
the Command Failures window.

or the traffic event navigator tree object
but they will all delegate this functionality ‘,';‘Sf‘,?‘!eeggﬂciys
to the GUITrafficEventHolder object. and plan items.

: : GUT folder

The user may also be able to drag

ResponseDataCreators to other

objects such as the EventDialog This will be
t,

Command
Response . Status
GUIResponsePlanitem DataCreator ‘ Gul ‘ TrafficEvent Handler
Operator

[drags object over event]
allowDrop

[object not ResponseDataCreator].
Réiiirm drag permission for other types of obj

. __..[event closed or user does not have rights .
"Reject Drag" The s
pecific type of
i | Fereate—>/ ResponsePlantiemData | ResponsePlanttemData
| T that will be created

el ponseTargetID- i
[item containing target ID is already in .| depends on which type
~plan and new RPID is not executable]--

"Reject Drag"

"AcCept Dragt- e

[drops ResponseDataCreator on event]
handleDrop

is called to create it.

reateCommandStat Fcreate—>{ CommandStatus

—
addResponsePlanttem
ResponseDataCreator)

ponseTargetiD

[item with matching target ID in plan and new RPID not
L response plan tem contaning arget I alcady in plan... O ompletedtallre)

1
addResponsePlanitem
(ResponsePlanitemData)

ger If successful, the

server will push a
getToker ResponsePlanttemAdded o]
addResponsetiem - ResponsePlanter
i event. See the diagram:
|.__[norights] .| HandieEventResponsePlanitemAdded
[“AccessDenied for details about the handiing of a

[event under control of new response plan item

ResourceControlConflict

[event closed or other error]
CHART2Exception

[er‘ror]
UIException

iccess or failure reason)

Figure 144. GUITrafficEventModule:AddResponsePlanitem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-208 11/20/00

3.12.2.8 GUITrafficEventModule:AddTextToEventHistory (Sequence Diagram)

This diagram shows how a text entry is added to the traffic event’s history log. When a user
types in a new entry and hits Enter, the Event Dialog calls the GUITrafficEventHolder to
add a log entry. This in turn calls the TrafficEvent CORBA interface to add the log entry. If
there is an error adding the entry, the error will be displayed in the dialog; otherwise, a
CORBA event will be pushed by the server containing the new log entry, and the GUI will
catch this event and add the row to the traffic event history display.

o

: : EventDialog GUITrafficEventHolder TrafficEvent Gul
Operator
[enter key
pressed in,
~"event log panel
keyPrgs’::‘;ed 1 addLogEntry—>4 get
The ability to
add log entries getToken
will be disabled if
the user does not addLogEntry——=2_
have the correct [norights]._____i e
rights. AccessDenied | TR -
[other error] If successful, this will
Hommmmnon Lo cause a HistoryLogEntriesAdded
GUIE[(';%'QN o CHART2Exception event to be pushed by the server.
[error]
"Display Error*

< [EITOF]'”””””"

Figure 145. GUITrafficEventModule:AddTextToEventHistory (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-209 11/20/00

3.12.2.9 GUITrafficEventModule:AssociateEvent (Sequence Diagram)

This diagram shows how an event is associated from the GUI. The user drags the secondary
event onto the primary event in the Navigator and drops it. The primary
GUITrafficEventHolder will call its own associateEvent() method, passing the secondary
event’s GUI wrapper. The primary GUITrafficEventHolder will then call the secondary
one, this time passing its own TrafficEvent CORBA interface object. The secondary
GUITrafficEventHolder will then call the passed TrafficEvent object, passing its own
TrafficEvent object as the event to associate. If successful, the server will push a CORBA
event with the new association. See the sequence diagram: HandleEventEventAssociated
for details. If the association fails, a CommandStatus object will be created so that the
failure will appear in the Command Failures window.

% GUITraffic GUITraffic TrafficEvent C%Tar&asnd
EventHolder EventHolder Primary)
(Primary) (Secondary) Gul —
Operator -

[drags object over
|-GUITrafficEventHolder}—{
allowDrop

The user may also

drag another event

over the event object

in the navigator tree

or the EventDialog

to associate. In that case
those objects will delegate
the call to the
GUITrafficEventHolder
object which they represent.

R [no rights]
"Reject Drag"

[object does not
I<represent a eraffic event}-
"Reject Drag"

[event is already
I<—associated to this one]
"Reject Drag"

["Accept Drag"~
[secondary

-event dropped]
handleDrop

associateEvent
(secondary GUITrafficEventHolder)
«

(primary TrafficEvent) get
——getCommandStatusHandler—=>;
cre
7crea|e—% CommandStatusimpl
-getToken——————>}
dary TrafficEventy
[no rights]
AccessDenied
[other error]
CHART2Exception
(success or failure reason)
[error]
GUIException

{no error}

Figure 146. GUITrafficEventModule:AssociateEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-210 11/20/00

3.12.2.10 GUITrafficEventModule:ChangeEventType (Sequence Diagram)

This diagram shows how the event type is changed. The user clicks on a button in the
EventDialog indicating the type of event to change to. The EventDialog then calls the
GUITrafficEventHolder wrapper, which in turn calls the TrafficEvent CORBA interface to
change the event. If successful, the dialog will be changed immediately and a CORBA
event will be pushed by the server to update all of the other GUIs; otherwise, an error
message will be displayed in the dialog. See the sequence diagram:
HandleEventEventTypeChanged for details on the handling of the CORBA event that is

pushed.
:(): EventDialog GUITrafficEventHolder TrafficEvent GuUI
Operator
[clicks on a
different event type]____
actionPerformed / changeType
/ get
; getToken
/ changeType———==3 _

This button will Il [no rights] " K successful, the server will push a B
be disabled if the AccessDenied TrafficEventTypeChanged

event is not open

event. See the sequence diagram:
or if the user does

[event under control of HandleEventEventTypeChanged

another op center and no

not have rights. < e override rights] for details.
ResourceControlConflict
S [invalid type] .. i
UnknownEventType
S [othererror] i
CHART2Exception
[error]
GUIException
[error]
"Display Error"
[error]
A — new TrafficEvent--------
i<---new TrafficEvent--
getBasicEventData:
[error]
CHART2Exception
[error]
"Display Error"
[error]
typeChanged (
TrafficEvent,—

BasicEventData)
.| See the sequence diagram:
HandleEventEventTypeChanged
for details on the effects of this
call.

Figure 147. GUITrafficEventModule:ChangeEventType (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-211 11/20/00

[DCE:293]

3.12.2.11 GUITrafficEventModule:CloseEvent (Sequence Diagram)

This diagram shows how a traffic event is closed from the GUI. The operator clicks on
“close” from the GUITrafficEventHolder’s menu or from the EventDialog, and the
GUITrafficEventHolder’s close() method is called, which calls the TrafficEvent CORBA
interface. If the traffic event is closed, a CORBA event will be pushed. See the sequence
diagram: HandleEventEventClosed for details.

Q Command
j< Status
GUITrafficEventHolder TrafficEvent GUI Handler
Operator

| __[clicks on "close"]
{7 actionPerformed

ey close
This menu item or button <
will be disabled if the user get
does not have rights, or |
if the event is already closed. getToken

getCommandStatusHandler———————>1

createCommandStatus
Lcreate—>{ CommandStatus
The EventDialog or Close
EventNavinstance may [no rights]
actually be called instead, AccessDenied If successful, the
but they will call the close server will push a
[other error] i
method. CHART2Excepiion -elz-\r/gﬁf EventClosed

[event under control
P of another op center
and no override rights]
ResourceControlConflict

completed (success or failure reason)

[error]
GUIException
‘\J

If this command is invoked from the EventDialog,
the error message will be displayed to the user

Figure 148. GUITrafficEventModule:CloseEvent (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-212 11/20/00

3.12.2.12 GUITrafficEventModule:Discovery (Sequence Diagram)

This diagram shows what happens in the GUITrafficEventModule during the discovery
phase, when CORBA event channels and objects are discovered. First, the CORBA event
channels are queried from the trader for TrafficEvent and CommLog event channels.
PushEventConsumer objects are created for each channel and added to the
EventConsumerGroup to maintain the connection to the event channels. During the object
discovery phase, the module queries the CommLog objects from the trader and adds them
to the GUICommLog object. Then the module queries the TrafficEventFactory objects, and
gets the TrafficEvent objects from the factories. For each TrafficEvent, a
GUITrafficEventHolder will be created and added to the DataModel if one does not already
exist for that traffic event. A GUITrafficEvent object will be created, whose type depends
on the type of traffic event discovered. Then the ResponseParticipation objects are obtained
from the traffic event and added to the GUITrafficEventHolder and to the DataModel.

Then traffic event associations are obtained from the TrafficEvent and
TrafficEventAssociation objects are created and added to the DataModel. Then the
ResponsePlanltems are retrieved, and for each one, the GUIResponsePlanltemCreators are
called until a type-specific GUIResponsePlanltem wrapper object is created for the
ResponsePlanltem. The GUIResponsePlanltems are added to the GUITrafficEventHolder
and to the DataModel. Then the entries are retrieved from the TrafficEvent’s history log and
are added to the GUITrafficEventHolder’s cache of log entries.

R1B2 GUI Detailed Design Rev. 0 3-213 11/20/00

E Gul Comm Event
Planitem “log
Gul CosTrading. TrafficEvent Response “Creator
Discovery GUIT»;@fch‘Evem Looku ‘ DataModel TrafficEvent Planitem Creator GUICommLog Client Group
Thread
{_query (T
event channels) PushEvent
Consumer
* for each event reate-
channel found] add
[—
{__query (CommLog. S
event channels)
[* for each event create
channel found]
[Ea— add
[——discoverObjects: query.
(CommLog objects)
g
ommL,
FaddCommLog—>!
~ The module will compare the lan i
. The processing after the objects are queried from the tvader will occur on [not in
LL O:grmetgh] another thread to avoid tying up the discovery thread, but fc,”‘"rf;g :r?;c‘: 5 gr?éimai\%"ﬁ\rlnag‘de ;?‘clg;y CommLogClient]
¢l -1 shown on the discovery thread here due to Space limit ons ane configura " v new “Add CommLog”
objects)
aneC This will be a
. i derived class
getTr T whose type
i depends on the
type of event that
+ was di
getObje d GUITraffic
[notin DataModel]. EventHolder
create
A GUIOrganizationParticipation
or GUIResourceDeployment
—create—>| will be created, depending
j (GUITH on which type of participation
object is found.
) (Gurm
getResp h GUResponse
[* for each | creater “1
Pavo obiectAdded The TrafficEventAssociation
T (GURes Jpation) object will have to
| (GUIResponseParticipation) e o)
for each and equals() in such a
Traffic way to avoid duplicates
povent 9 in the DataModel.
actory] TrafficEvent |
[* for each reatt iation
associated
even] (TrafficEventAssociation)
[* for each
.
g
getlD:
getObje [not in DataModel]
[* for each GU reator}
" [correct type of GUIResponse
[* for each crea(eGUIResponsePlam(em L RecponsePiantem —P—P‘am‘em
ull or GUI (if correct type) create I
[GUResponsePlanitem created]
objectAdded U eated] The actual type of
responsePlamtemAdded will correspond to the
type of
create >
getHistor
| [more entries]
“entries and Iterator" create 2 Logtterator
[* while more
entries] g
i—objectUpdated (GUITrafficEventHolder)—>!

Figure 149. GUITrafficEventModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-214

11/20/00

3.12.2.13 GUITrafficEventModule:ExecuteResponse (Sequence Diagram)

This diagram shows how a response plan is executed. The user clicks on the “Execute”

button or menu item, and the GUITrafficEventHolder’s executeResponse() method is

called, which calls the TrafficEvent’s executeReponse(). As the response plan is executed,
the server will push an event to indicate that the response plan’s status has changed. If an

error occurs immediately, a message will be displayed in the dialog or a
CommandStatusimpl object will be created to show the command failure. If the response

plan is successfully executed, the server will push a PlanStatusChanged event and the

GUIResponsePlanltems will be updated to show the status of the individual items. Upon
failure of individual items, a CommandStatusimpl object will be created to show the failure
in the CommandFailures window.

If the user does not

have rights or the event
is closed, this functionality | .
will be disabled.

This may also be called

from the Navigator,
via the popup menu for

the GUITrafficEventHolder.

Command
GUITraffic Status
EventDialog EventHolder TrafficEvent GUI Handler
Operator
[clicks on
—"Execute" button|—>1
actlonPerformed] = executeResponse
get
getCommandStatusHandler———>
createCommandsStatu
getTok
——executeResponse P f successful,
[no rights] the server will push
AccessDenied ResponsePlanStatusChanged

e ferror] ey

[other error]

CHART2Exception
[event under control of
another op center.

and no override rights]
ResourceControlConflict

being activated.

[error]
GUIException

[error]
"Display Error"

completed (failure reason)

completed (success)

create: CommandStatus

CORBA events to show the progress
of the execution, in addition to
the type-specific CORBA events that
are pushed as a result of the items

Figure 150. GUITrafficEventModule:ExecuteResponse (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-215

11/20/00

3.12.2.14 GUITrafficEventModule:ExecuteResponseltem (Sequence Diagram)

This diagram shows how one or more response plan items are executed. The user clicks on
the “Execute Selected Items” button or menu item, and the GUIResponsePlanltem’s
execute() method is called, which calls the ResponsePlanltem’s execute(). If successful, the
server will push a PlanStatusChanged event and the GUIResponsePlanitems will be
updated to show the status of the individual items. Upon failure of individual items, a
CommandStatusimpl object will be created to show the failure in the CommandFailures

;(: EventDialog ‘ GUIResponsePlanitem ResponsePlanitem ‘ Gul ‘
Operator
[clicks on "Execute
| Selected ltems" S
7 button] .~
If the user does not ~| actionPerformed
have rights or the event S
is closed, this functionality | execute—>
will be disabled. get:
-getToken-

execute————=

This may also be called [no rights]

from the Navigator, [* for each AccessDenied

vrxa Igzl%opup mer;ll for't i selected

the esponsePlanitem GUIResponsePlanitem [other error] If successful_,
objects. CHART2Exception the server will push

ResponsePlanStatusChanged
[evemﬁljnder comr‘o\ of CORBA events to show the progress
ananr?cv :vrel:ﬁdcee:‘\ ehrrs] of the execution, in addition to
ResourceControIC%nflict the type-specific CORBA events that
are pushed as a result of the items
[error] being activated.
GUIException

[errors]
"Display Errors"

S [error}------mri

Figure 151. GUITrafficEventModule:ExecuteResponseltem (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-216 11/20/00

3.12.2.15 GUITrafficEventModule:GetEventHistoryText (Sequence Diagram)

This diagram shows how a log search is done. The user clicks on the search button in the
EventDialog, and a search dialog is displayed and initialized with the settings from the last
LogFilter (if any). The user enters the search criteria and presses the “OK” or “Search”
button. This causes a LogFilter to be created and then an EventLogSearcher thread is
created and started for the asynchronous search. The thread calls the getHistory() method of
the GUITrafficEventHolder, which in turn calls the TrafficEvent. Results from the search
(either errors or LogEntries) are stored in SearchErrorCommand objects or
SearchEntriesFoundCommand objects and are invoked later on the main AWT event
thread. (This is necessary to ensure proper interaction between the search dialog and the
search results). If there are more entries, the Loglterator will be used to get them. When the
search dialog receives a new batch of log entries, it will sort them to ensure that they are
displayed in the correct order.

o javax.swing.
% GUIratfic
j< GUIratfic SwingUiilties
EventDialo LogFilter EventHolder cul TrafficEvent
Java Operator
[clicks on "Search TrafficEvent
|-—Event Log LogSearch
actionPerformed ~ ——create—>| Dialog
i [existing filter] S
“Get Data’

[existing fiter]
"Initialize From Data"

[user clicks "OK" or “Search’]. S

actionPerformed

\\\\\
EventLog

Searcher

setDaemon

[

getHistory————>4

getHi

[error]___
CHART2Exception

[error].
Create ,‘ Command

[error]
invokeL ater

ferror]
GUiException

[more.
Loglterator

| ntries}
e EiriES @Nd Heratop---err e create

—ooreennnn Entries and
Iterator”

e
[success] EntriesFound
create Command

[success]
invokeLater

[* while more [more entries]
entries] create

[more entries]
invokeLater

[success]

"Sort and Display
Search Entries”
i Searen

[error]
run

|
Display Error"

Figure 152. GUITrafficEventModule:GetEventHistoryText (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-217 11/20/00

[DCE:303]

3.12.2.16 GUITrafficEventModule:HandleEventCommLogEntryAdded (Sequence
Diagram)

This diagram shows the processing that is done when a LogEntryAdded event is pushed to
the GUI. The CommLogPushReceiver catches the event and calls the GUICommLog’s
entryAdded() method. The entry is added to the GUICommLog’s cache and the
GUICommLog calls the DataModel to notify all observers that the GUICommLog has been

updated.
CommLog
PushReceiver GUICommLo GUI DataModel
ORB

push

(LogEntryAdded) N

ger

——entryAdded——>
get
—getDataModel—=>
objectUpdated——————=—> The DataModel will update
.| any attached observers (such
1 as the Comm Log dialog)
asynchronously.

Figure 153. GUITrafficEventModule:HandleEventCommLogEntryAdded
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-218 11/20/00

3.12.2.17 GUITrafficEventModule:HandleEventEventAdded (Sequence Diagram)

This diagram shows the processing that occurs when a TrafficEventAdded CORBA event is
pushed to the GUI. The TrafficEventPushReceiver receives the event, and creates a
GUITrafficEventHolder object if one does not already exist in the DataModel with the
same ID. (The GUITrafficEventHolder may already exist if this GUI just created a new one
before calling the TrafficEvent). The GUITrafficEventHolder will create a
GUITrafficEvent, whose type depends on the type of BasicEventData passed in. The
GUITrafficEventHolder and GUITrafficEvent are added to the DataModel. Any log entries
are then added to the GUITrafficEventHolder object. As it is a new event, there may or may
not be existing log entries; however, there will not be any response plan items or response
participations.

TrafficEvent
% PushReceiver TrafficEvent GUl DataModel
ORB
__push >
(TrafficEventAdded) Check if the object exists in case
getiD this GUI just created it.
get d
getDataModel) The type of
. P e type of
getObject GUITrafficEvent
created depends on the
type of BasicEventData
_Creatg‘(‘%trg’fﬁﬂg]\,em, i3] GUITrafficEventHolder passed in.
BasicEventData) 4
creale GUITrafficEvent
get
—getDataModet—>}
+——objectAdded(GUITrafficEventy—>}
logEntriesAdded———>
objeétAdded(GUITrafficEventHoIder;

Figure 154. GUITrafficEventModule:HandleEventEventAdded (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-219 11/20/00

3.12.2.18 GUITrafficEventModule:HandleEventEventAssociated (Sequence Diagram)

This diagram shows the processing that occurs when a TrafficEventAssociated or
TrafficEventAssociationRemoved event is received in the GUI. The
TrafficEventPushReceiver receives the event, then it calls the GUITrafficEventModule to
find the association. If the association was added and the TrafficEventAssociation object
did not exist, a new TrafficEventAssociation is created and added to the DataModel. If the
TrafficEventAssociation did exist and the association was removed, then it will be removed
from the DataModel.

TrafficEvent)
PushReceiver U DataModel GUITrafficEventModule
ORB

)

___push i
(TrafficEventAssociated) get

findAssociation

gct
<——getDataModet
<_getAIIObjectsOnype_
(EventAssociation)
A J— TrafficEventAssociation or null if not foung-------=------=-3
____________ [association i
[~ added and found]
get
——getDataModel——>]
[association added] TrafficEvent
create Association

[associatioﬁ added]

[association objectAdded
S removed and----------"1 :
not found] [association removed]

objectRemoved

~~.] The hashKey() and
equals() methods will
be reflexive with
respect to the IDs
to prevent duplicates
in the DataModel.

Figure 155. GUITrafficEventModule:HandleEventEventAssociated
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-220 11/20/00

3.12.2.19 GUITrafficEventModule:HandleEventEventClosed (Sequence Diagram)

This diagram shows the processing that occurs if the event is closed and a
TrafficEventClosed event is received in the GUI. The TrafficEventPushReceiver receives
the pushed event, and calls the GUITrafficEventHolder to inform it that it’s closed. The
GUITrafficEventHolder updates any state data and then calls the DataModel’s
objectUpdated() method to notify all interested observers of the change.

TrafficEvent GUITraffic
PushReceiver EventHolder GUI DataModel
ORB
push .
(TrafficEventClosed) ~——eaventClosed—> The DataModel will

cause the update()
method to be called

for all GUIModelObservers
on the main AWT

event thread at a

later time.

1
"Update State Data"

get
——getDataModel
objectUpdated——=>

Figure 156. GUITrafficEventModule:HandleEventEventClosed
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-221 11/20/00

3.12.2.20 GUITrafficEventModule:HandleEventEventDeleted (Sequence Diagram)

This diagram shows the processing that happens when a traffic event is removed from the
system and a TrafficEventDeleted CORBA event is pushed to the GUI. The
TrafficEventPushReceiver catches the event and calls the GUITrafficEventHolder to inform
it that the event was removed. The GUITrafficEventHolder calls the GUITrafficEvent to
clean itself up. This will cause all panels in the TrafficEventDialog which apply to the event
to be cleaned up and the references to the event removed. Any references held by the
GUITrafficEventHolder will be cleaned up, and the GUITrafficEvent and
GUITrafficEventHolder will be removed from the DataModel. All input on the
EventDialog will be disabled. A message will be displayed to the user explaining that the
event was removed from the system and the input will be disabled in the event history log.

TrafficEvent GUITraffic
PushReceiver EventHolder GuI DataModel GUITrafficEvent EventDialog
ORB
push
(TrafficEventDeleted) ~—eventRemoved—>}
get
getDataMode—— ¢+ b Clean up the
GUITrafficEvent.

Includes cleaning up
et panels and removing
cleanup references to them.

objectRemoved (GUITrafficEvent) Egsepraerf\::se Ifg\gsu |ttli) ?ﬁé

— GUITrafficEvent. If they
R_(Igm_lqveﬂReEfererpe do, these references
o TrafficEvent need to be nulled out.

—
[* for each LogEntry]
"Remove Reference"

[* for each GUIResponseParticipation] 9
objectRemoved (GUIResponseParticipation) ng Cﬁ?éﬂ\é?tshg pggigl(&(;ggltg?ds
N S some later fime.

objectRemoved b
(GUITrafficEventHolder)

| Amessage wil
d "] be displayed to the
update™ user indicating that
= the event has been
Display Error | removed from the
Message system.

"Disable

History Log"
P

| All other input
has already been
disabled because the
event is closed.

Figure 157. GUITrafficEventModule:HandleEventEventDeleted
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-222 11/20/00

3.12.2.21 GUITrafficEventModule:HandleEventEventTypeChanged (Sequence
Diagram)

This diagram shows the processing that occurs when a TrafficEventTypeChanged event is
received on the TrafficEvent channel. The TrafficEventPushReceiver receives the event,
and notifies the GUITrafficEventHolder that the type has changed. The
GUITrafficEventHolder creates a new GUITrafficEvent and replaces its reference to the
event. The old GUITrafficEvent is removed from the DataModel and the new one is added,
and the GUITrafficEventHolder calls the DataModel to inform interested observers that it
has changed. The EventDialog will receive an update from the DataModel and will remove
all of the panels for the old GUITrafficEvent, and the old GUITrafficEvent will clean itself
up and be deleted. The new GUITrafficEvent will supply all of the panels for the
EventDialog, and these panels will be added to the dialog and displayed.

EventDialog GuUITrafficEvent

TrafficEvent GUTraffic
PushReceiver Gul DataModel EventHolder
ORB

g
i—getDataMode—{ be updated, so this check
is to ensure that the update
f~not found]-- getObject Lo that GUI is not done again.

hanged(Tr

mﬁé"’e'df w)S ﬁ'é’?ﬂﬁi P [new TrafficEvent same reference.__________.7| B —
traffic event is not found. k.....levent as current TrafficEvent] Thet
not changed] reat

created will be
determined by the

e of BasicEventData
that is received

push
(T The GUI originating the
[TypeChanged) type change will already

——
"Replace reference
to old GUITrafficEvent
with reference to new
GUrTrafficEvent”

of

< objectRemoved.

{old GUITrafficEvent)
< objectAdded.
(new GUITrafficEvent)
objectUpdated create(old GUIM . new GUIT!) 7| EventTypeChangetint
raffic
EventHolder)
Clean up the old GUITrafficEvent.
update Includes cleaning up panels and
| changeEventType removing references to them.

IdEvent, newEvent) | | The panels should not have

The DataModel i (oldEvent | ; e ol

will call the observers D, GUMraffieEvent. Ifthey do,

gcel:‘e‘m:gd/;\{\g “Remove all these references need to be

eventihre paneks from | nulled out The panels created wil

' be all panels necessary to
. . bo] display the data
reandy pertaining to the specific
[* for each javax.swing. type of event.
getTabPanes—>} . piicable. JPanel
St | panel]
create
“Add the

components and
reshape frame"

X

Figure 158. GUITrafficEventModule:HandleEventEventTypeChanged
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-223 11/20/00

3.12.2.22 GUITrafficEventModule:HandleEventResponseParticipationAdded
(Sequence Diagram)

This diagram shows the processing that occurs when a ResourceDeploymentAdded or
OrganizationParticipationAdded event is received on the TrafficEvent event channel. The
TrafficEventPushReceiver receives the event and creates a GUIOrganizationParticipation or
GUIResourceDeployment, and adds it to the GUITrafficEventHolder. The
GUITrafficEventHolder calls the DataModel to inform all interested observers that it has
changed, so that the EventDialog can be updated with the new participation. The new object
will also be added to the DataModel.

j(TrafficEvent GUITraffic
PushReceiver GUI DataModel EventHolder
ORB
push
#(ResourceDegll’oym entAdded__, A GUIOrganizationParticipation
ot P or GUIResourceDeployment
OrganizationParticipationAdded) get will be created, depending on
getDataModel s which type of event is received.
getObject
— [GUITrafficEventHolder________
not found]
Create GUIResponse
Participation
participationAdded
get
K——getDataMode————
objectUpdated.
(GUITrafficEventHolder)
objectAdded S .
(GUIResponseParticipation) The DataModel will asynchronously
e call all of the observers attached
~._ | toit, informing them of the new object.
™ The EventDialog and/or
ParticipationPanel will be attached
to the DataModel, so it will receive the
update and add the row to the
participation table. !

Figure 159. GUITrafficEventModule:HandleEventResponseParticipationAdded
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-224 11/20/00

3.12.2.23 GUITrafficEventModule:HandleEventResponseParticipationRemoved
(Sequence Diagram)

This diagram shows the processing that occurs when a ParticipationRemoved event is
received by the TrafficEvent channel. The TrafficEventPushReceiver receives the event,
gets the GUIResponseParticipation object from the DataModel, and asks it for the
GUITrafficEventHolder. The GUITrafficEventHolder removes the
GUIResponseParticipation from itself and calls the DataModel to update any observers
(notably the EventDialog). The GUIResponseParticipation object is also removed from the

[e]
j TrafficEvent GUIResponse GUITraffic
PushReceiver Gul DataModel Participation EventHolder
ORB
push
(ParticipationRemoved)
get———>
—getDataMode—>
67_[GUIResponsePanicipg}jgnﬁ getObject———>1
- not f getEvent
2 error will be logged participationRemoved
in the GUI log file if the get
response participation is .
not found. getDataModet

<objectUpdated (GUITrafficEventHolder

cleanup

objectRemoved_______
(GUIResponseParticipation) e

update all attached observers.

The DataModel will asynchronously %

Figure 160. GUITrafficEventModule:HandleEventResponseParticipationRemoved
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-225 11/20/00

3.12.2.24 GUITrafficEventModule:HandleEventResponsePlanitemAdded (Sequence
Diagram)

This diagram shows the processing that occurs when a ResponsePlanltemAdded event is
received on the TrafficEvent event channel. The TrafficEventPushReceiver receives the
event and calls the GUITrafficEventModule to tell it that a new ResponsePlanltem has been
added. The module then calls each of the installed GUIResponsePlanltemCreators to create
a GUIResponsePlanltem wrapper for the ResponsePlanitem. (A
GUIResponsePlanltemCreator will examine the type of the ResponsePlanltemData and if it
recognizes the type, it will create the wrapper). The module then gets the
GUITrafficEventHolder from the DataModel and adds the GUIResponsePlanltem to its list,
and updates itself through the DataModel to inform any interested observers of the change.
The GUIResponsePlanltem is also added to the DataModel.

The specific type of
GUIResponsePlanitem
will be determined by

which type of
R Data is
TrafficEvent GUTraffic GUITraffic GUIResponse passed.
PushReceiver EventModule Gul DataModel EventHolder PlanitemCreator
ORB
push |
(ResponsePlanitemAdded) ——responsePlanitem Addedt |
> [* for each GUIResponsePlanitem Creator]
[* for each createGUIResponsePlanitem
GUIResponsePlanitemCreator | [ResponsePlanitemData
until GUIResponsePlanitem i {__is the correct type N GUIResponse
is created] null or GUIResponsePlanitem for the creator] Planitem
I create

ic.....[no GUIResponsePlanitem.
was created] g

L[no GUIResponsePlanitem__

was created]
get
iThese errors will also
be logged to the GUI's log file. ——getDataMode—>

-getObject-

[event not found. i fevent not foundin_ .
N in DataModel] T DataModel]

responsePlantemAdded

"Add Response
Item To List"

get:

c objectUpdated.
(GUITrafficEventHolder)

—objectAdded(GUIResponsePlanitem)—>

Figure 161. GUITrafficEventModule:HandleEventResponsePlanltemAdded
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-226 11/20/00

3.12.2.25 GUITrafficEventModule:HandleEventTrafficEventStateChanged (Sequence

Diagram)

This diagram shows the processing that occurs if the event data is changed and a
TrafficEventStateChanged event is received in the GUI. The TrafficEventPushReceiver
receives the pushed event, and calls the GUITrafficEventHolder to inform it that the state
has changed. The GUITrafficEventHolder updates any state data and then calls the
DataModel’s objectUpdated() method to notify all interested observers of the change.

TrafficEvent GUITraffic
PushReceiver EventHolder GuUI DataModel
ORB
push
(TrafficEventStateChanged) ~+—eventStateChanged—
"Update
State
Data"
get
getDataModel——=> }
objectUpdated—%

The DataModel will

cause the update()

method of all observers

to be called asynchronously.

-1 These observers will include

the event dialog and
possibly its sub-panels.

Figure 162. GUITrafficEventModule:HandleEventTrafficEventStateChanged
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-227

11/20/00

3.12.2.26 GUITrafficEventModule:Login (Sequence Diagram)

This diagram shows the processing that is done when the user logs in. The GUI calls the
loggedIn() method of the GUITrafficEventModule. The module gets the toolbar and
enables the “Comm Log” button if the user has rights.

GUIToolBar

O .
GUITrafficEvent :
— Module TokenManipulator
GUI
loggedin
checkAccess—>
<—getToolBar————
[user has rights to view or manage
the Comm Log]
enableButton ("Comm Log")

Figure 163. GUITrafficEventModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-228

11/20/00

3.12.2.27 GUITrafficEventModule:Logout (Sequence Diagram)

This diagram shows the processing that is performed at logout. The GUI calls the
GUITrafficEvent’s loggedOut() method. Currently no other work is done at logout.

GUITrafficEvent
Module

GUI

loggedOut———>

This module does not perform any work on logout. Il‘

Figure 164. GUITrafficEventModule:Logout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-229 11/20/00

3.12.2.28 GUITrafficEventModule:ModifyResponseParticipationData (Sequence
Diagram)

This diagram shows an example of how a ResponseParticipation will be modified from the
GUI. The user may click on the “Notified” check box, which will cause the setNotified()
method of the GUIResponseParticipation object to be called, which will in turn call the
corresponding setNotified() method of the ResponseParticipation CORBA interface. If
successful, an OrganizationParticipationChanged or ResourceDeploymentChanged event
will be pushed by the server.

: : GResponse Response
Operator Participation GUI Panainaton

[clicks on "Notified"
2 check box]|—>

setNotified get
& getToken—>
The detailed mechanics setNotified
of how the setNotified() method [norights] i
is called are left for implementation. Acce5§Denied 1 successful, the
another op center controllin server will pushan
= th[e event anej no override righ?s] ———————————— OrganizationParticipationChanged
ResourceControlConflict or ResourceDeploymentChanged
1 event, depending on the type of
Iothér error] ResponseParticipation which is
CHART2EXxception being changed.
. . [error]
The appropriate GUIException

error message will

be displayed to the user.

The details of how this is done
are left for implementation.

Figure 165. GUITrafficEventModule:ModifyResponseParticipationData
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-230 11/20/00

3.12.2.29 GUITrafficEventModule:ModifyResponsePlanltemMessage (Sequence
Diagram)

This diagram shows how a message might be modified for a ResponsePlanitem. (NOTE -
this operation depends on the type of ResponsePlanltem, so the design may differ
somewhat for different types). The operator clicks on the “Edit Message” menu item on the
GUIResponsePlanltem’s context menu. The GUIResponsePlanltem catches the command
and calls doProperties() on itself. This creates a message editor, which calls the
GUIResponsePlanltem to get the item data, which in turn calls the ResponsePlanltem
CORBA interface. There may be no data returned, in the case that the message has not been
set. In this case, a new ResponsePlanltemData will be created by the message editor. The
message editor will then initialize itself with the ResponsePlanltemData (either retrieved
from the ResponsePlanltem or just created). When the user modifies the message and clicks
“OK” in the message editor dialog, the dialog sets the data in a ResponsePlanltemData and
calls the GUIResponsePlanltem to set the item data, which then calls the
ResponsePlanltem. If successful, the message editor will be closed; otherwise, it will
remain open and an error will be displayed. A ResponsePlanltemModified event will also
be pushed to all of the GUIs if it is successful.

R1B2 GUI Detailed Design Rev. 0 3-231 11/20/00

o

These are type-specific classes,
shown here as a suggestion of
how they might work; however,
the actual design may be different

depending on the type.

GUIResponse
i Gug,ﬁensne?]z‘se ‘ cul ‘ ResponsePlanitem ResponsePlanitemData
Operator
[clicks on
|—"Edit Message'"—>
actionPerformed P .
The menu item and ol roFemes
GUIResponsePlanitem
are type-specific. For
illustration purposes, " "Message
"Edit Message" is used, reat Editor”
although the actual
menu item may be
different.
getitemDatar
get
——getToken—>}
getitemData
[no rights]
AccessDenied
[other error]
CHART2Exception
[error]
GUIException
[error]
"Display Error"
Terror]
[error]
i<-------—-ResponsePlanitem Data--}
esponsePlantemData [no R.P.LD returned]
create >
——"Get Message Data"—>}
“Initialize With
Message Data"
how
[clicks "OK"]
actionPerformed "Set
Message ———>
setitemData: Baad
get
——getToken—>
etitemDatar
[no rights]
AccessDenied .
[other error] If successtul, this will
CHART2Exception cause the server to push a
v ferror] a ResponsePlanitemModified
GUIException event.
[error]
"Display Error"
[error}
)
closeWindow

Figure 166. GUITrafficEventModule:ModifyResponsePlanltemMessage
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-232

11/20/00

3.12.2.30 GUITrafficEventModule:RemoveltemFromResponse (Sequence Diagram)

This diagram shows how a response plan item is removed from a response plan. The user
clicks on the “Remove” button in the EventDialog, or from the GUIResponsePlanltem’s
context menu. The GUIResponsePlanltem’s remove() method is called, which calls the
ResponsePlanltem’s remove() method. The server will push a ResponsePlanltemsRemoved
event if it is successful; otherwise, an error message will be displayed in the EventDialog or
in the Command Failures window if the command was not invoked from the dialog.

% EventDialog GUIResponsePlanitem ResponsePlanitem Gul
Operator
[clicks on the
——"Remove" button]|—=>
%, actionPerformed remove
Y ‘ get
This button getToken
will be disabled if remove
the user does not [no rights]
have rights.
9 AccessDenied
[other error]
CHART2Exception .
[event controlled If successful, the server
A by another op center______ will push a
and no override rights] ResponsePlanitemsRemoved
[error] ResourceControlConflict event.
GUIException
[error]
"DispIaP/ Error"
[error]

Figure 167. GUITrafficEventModule:RemoveltemFromResponse
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-233 11/20/00

3.12.2.31
Diagram)

GUITrafficEventModule:RemoveResponseParticipation (Sequence

This diagram shows how a ResponseParticipation is removed. The user clicks on the
“Remove” menu item on the GUIResponseParticipation’s context menu, and it calls
remove() on itself. This calls the ResponseParticipation CORBA interface remove()

method. This will cause the server to push a ParticipationRemoved CORBA event if
successful; otherwise, an error is displayed in the EventDialog. See the sequence diagram:

HandleEventResponseParticipationRemoved for details on the handling of the event.

(]

N

Operator

The mechanics of how L .~
the remove method is

called will be left for
implementation.

[clicks on "Remove" from

_the response participation

object's menu]
actionPerformed

[error]

GUIResponse Response
Participation GuI Participation
remove
get
getToken—=>
remove
[no rights]

AccessDenied

[event contrdlled by another
S op center and no override rights]-—---1
ResourceControlConflict

[other error]

The error will be displayed
to the user somewhere in the

Event Dialog. The mechanics
of this are left for implementation.

GUIException

CHART2EXxception

If successful, the server

will push a ParticipationRemoved

CORBA event. See the diagram
HandleEventResponseParticipationRemoved
for details.

Figure 168. GUITrafficEventModule:RemoveResponseParticipation
(Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-234

11/20/00

3.12.2.32 GUITrafficEventModule:SearchCommLog (Sequence Diagram)

This diagram shows how a log search is done. The user clicks on the search button in the
CommLogDialog, and a search dialog is displayed and initialized with the settings from the
last LogFilter (if any). The user enters the search criteria and presses the “OK” or “Search”
button. This causes a LogFilter to be created and then a CommLogSearcher thread is
created and started for the asynchronous search. The thread calls the getEntries() method of
the GUICommLog, which in turn calls the CommLog object(s) it contains. Results from the
search (either errors or LogEntries) are stored in SearchErrorCommand objects or
SearchEntriesFoundCommand objects and are invoked later on the main AWT event
thread. (This is necessary to ensure proper interaction between the search dialog and the
search results). If there are more entries, the Loglterator will be used to get them. When the
search dialog receives a new batch of log entries, it will sort them to ensure that they are
displayed in the correct order.

o

javax.swing,
SwingUtiliies

GUICommLog CommLogClient

[=

CommLogDialog LogFilter
Java Operator
[clicks on "Search
|—Comm Log'—4 CommLog
actionPerformed ~ ——creat SearchDialog

fexisting fitter]
"GetData” 7]

—
[existing flter]
“Initialize From Data"

Juser clicks "OK" or "Search]
actionPerformed

:::::

CommLog

Searcher

setDaemon

get
——getToken——>

-getEntrie:

ferror]
CHART2Excepton

_ferror]
GUiException

ferror]

create

L
Command

[error]

nvokeLater J
[more Logtterator

entries}
i-————"Entries and terator"—~— create

... "Entries and,
N tterator"

LogEntriesFound
mand

[success]
create

[success]
invokeLater

[* while [more entries]

more

entries

1 [more entries].
invokeLater

[entries found]

“Sort and Display
Search Entries”
Pkl

[error].
run,

——
"Display Error"

Figure 169. GUITrafficEventModule:SearchCommLog (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-235 11/20/00

[DCE:337]

3.12.2.33 GUITrafficEventModule:SetLaneConfiguration (Sequence Diagram)

This diagram shows how a lane configuration is set. During discovery, the possible
standard lane configurations were obtained from the TrafficEventFactory objects and stored
in the GUITrafficEventModule. The operator will be able to select one of the lane
configurations. Then the operator clicks on “Set Lane Configuration”, which gets the lane
configuration data for each lane in the panel. A LaneConfiguration object is created, and the
GUITrafficEvent’s setLaneConfiguration() method is called. This calls the RoadwayEvent
interface to set the lane configuration. If successful, the server will push a
LaneConfigurationChanged event.

RoadwayEvent

Lane
} Conggaﬁrealmnn_ GUITrafficEvent
Operator

[clicks on

"Set Lane
" Configuration”]
" actionPerformed

"
[* for each Get Data

This button will lane iH jc_For Lane”
be disabled if the user panel Lane
does not have rights. creat Lane

N|
create- mliguraﬂon

get
getToker

tLaneConfi

[no rights] [If successful, the server

e e will push a
AccessDenied LaneConfigurationChanged
event.

[event under control
A of another op center

and no override rights]
ResourceControlConflict

[other error]
[error] CHART2Execption
GUIException

[error]
"Display Error"

[error]

Figure 170. GUITrafficEventModule:SetLaneConfiguration (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-236 11/20/00

3.12.2.34 GUITrafficEventModule:Shutdown (Sequence Diagram)

This diagram shows the processing that happens at shutdown. The GUI calls the
GUITrafficEventModule’s shutdown() method, which deactivates the
TrafficEventPushReceiver and CommLogPushReceiver objects.

®)

GUITrafficEventModule

U
>

GUI

—shutdown——>

deactivate object N
(TrafficEventPushReceiver)

deactivate object
(CommLogPushReceiver)

Figure 171. GUITrafficEventModule:Shutdown (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-237 11/20/00

3.12.2.35 GUITrafficEventModule:Startup (Sequence Diagram)

This diagram shows the processing that is done at GUI startup. The GUI calls the startup()
method of the GUITrafficEventModule, and the module adds the “Comm Log” button to
the GUI toolbar. The module adds itself as a filter supporter, so that it can create the
navigator filters when they are requested. A GUICommLog object is created and added to
the DataModel. Also, the TrafficEventPushReceiver and CommLogPushReceiver objects
are created and activated, so that they can receive any CORBA events that are pushed on
either the TrafficEvent or CommLog event channels, respectively. Sometime later, the
FilterManager object may call the GUITrafficEventModule to create any default system
filters if the filters were not loaded successfully from the system profile. If this happens, the
module will create an EventNavGroup system filter and return it.

N

FilterManager GUI

GUITrafficEventModule ‘

DataModel FilterManager

POA GUIToolBar

tartup
[<—getToolBar—

-addButton ("Comm Log")

create 7 GucommLog
- CommLogClient
EobjectAdded (GUICommLog)—> c'ea'E TraficEvent
creater /‘ PushReceiver

activate_object.
(TrafficEventPushReceiver) |

N/ Activated to be able
CommLog to receive CORBA
PushReceiver events pushed through
the event channel.

activate_ol i
(CommLogPushReceiver)

[filters not loaded from
———system profile]————>
getDefaul

[create 9‘ EvenlNavGroug‘

Figure 172. GUITrafficEventModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-238 11/20/00

3.13 GUIUserManagementModule

3.13.1 Class Diagrams

3.13.1.1 GUIUserManagementClasses (Class Diagram)

This diagram shows the classes used by the GUIUserManagement module and their
relationships.

InstallableModule

2

GUIUserManagementModule

get()
getUserManager()
configureUsers() UserConfigurationDialog
1 1 | configureRoles() 1 0.1
UserManager getOpenedUserConfigDialog()
setOpenedUserConfigDialog()
getOpenedRoleConfigDialog() createdUser(userName)
setOpenedRoleConfigDialog() ;
getSystemProfile():Profile
getUserProfile():Profile

1
0.1
RoleConfigurationDialog
createdRole(role,description) q V
-getRoleFunctionalRights() : rightsList D
-setRoleFunctionalRights(rightsList) java.awt.event.
ActionListener
™ UserLoginsDialog
CreateRoleDialog ’ CreateUserDialog
-forceLogout()

Figure 173. GUIUserManagementClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-239 11/20/00

3.13.1.1.1 CreateRoleDialog (Class)

This dialog allows the administrator to create a new role.

3.13.1.1.2 CreateUserDialog (Class)

This dialog allows the administrator to create a new user.

3.13.1.1.3 GUIUserManagementModule (Class)

This class implements the InstallableModule interface and performs functionality for
managing user rights. It can be called to configure the roles and users, or to force a logout.

3.13.1.1.4 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.13.1.1.5 java.awt.event. ActionL.istener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.13.1.1.6 RoleConfigurationDialog (Class)

This dialog allows the administrator to configure the roles in the system. It supports the
Create Role, Delete Role, and Set Role Functional Rights functionality. If the user does not
have role configuration rights, all editing functionality will be disabled.

3.13.1.1.7 UserConfigurationDialog (Class)

This dialog allows the administrator to view or configure the users’ roles, assuming the
roles have been defined. It supports the Create User, Delete User, Change User Password,
Grant Role and Revoke Role functionality. If the user has view rights but not configuration
rights, all configuration abilities will be disabled.

3.13.1.1.8 UserLoginsDialog (Class)

This dialog displays a list of currently logged in users and allows the administrator to force
one or more users to be logged out.

R1B2 GUI Detailed Design Rev. 0 3-240 11/20/00

3.13.1.1.9 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

R1B2 GUI Detailed Design Rev. 0 3-241 11/20/00

3.13.2 Sequence Diagrams

3.13.2.1 GUIUserManagementModule:AddUser (Sequence Diagram)

This diagram shows how a user is added to the system. From the User Configuration
Dialog, the administrator clicks on “New User”, and the Create User Dialog is invoked.
When the administrator clicks “OK?, if the new password is the same as the confirmation
password, the dialog will call the UserManager to create the user. If the user name or
password are invalid, a message box will be displayed and the administrator will be given a
chance to correct the mistake. If the user was successfully created, it will be added to the
User Configuration dialog if it is still open.

% User
Configuration javax.swing. GUIUserManagement
Administrator Dialog UserManager JOptionPane Gul Module
[clicks on New User]
1 actionPerformed
Create CreateUser
Dialog
This menu item will be
disabled if the user does :
not have rights. how
[clicks OK]
d [passwords;
acuonPeriformed don't match
P [passwords don'tmatch) | showMessageDialog
allow user to retype etToken
getUserManager
createUser
e [AccessDenied or_______
CHART2Exception]
[AccessDenied or
CHART2Exception] .
[AccessDenied or showMessageDialog "y
S T T T T T CHAR T 2Exception] T ; ~1 Adialog will be displayed
piion] < I'rgll\;la\lll?(!llgg:?vveo%] -------- _.{ indicating the cause of the
| failure.
linvalid nameor 7
[invalid name or showﬁssg;gl[])ialog
- invalid password]-------------mrmmmmey
allow administrator to retype o
[success and getOpenedUserConfigDialog
dialog exists]
createdUser
add user ><
to list of
users

Figure 174. GUIUserManagementModule:AddUser (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-242 11/20/00

3.13.2.2 GUIUserManagementModule:ConfigureRoles (Sequence Diagram)

This diagram shows how the Role Configuration Dialog is invoked. The adminstrator clicks
on the “Configure Roles” toolbar button. The GUIUserManagementModule then creates the
Role Configuration Dialog. This gets the Organizations from the trader, and gets all of the
roles. It then gets the functional rights for the first role in the list. It displays the roles,
functional rights within a role, and organizations supporting a given functional right. If the
user does not have the ConfigureRoles right, all editing features will be disabled.

[e]

javax.swing. CosTrading.

i GUIUserManagement
Module GUI JOptionPane Lookup

Administrator

UserManager

[clicks on Configure
[Roles toolbar button}—>
actionPerformed

.
configureRoles
[E—

This will be disabled [ﬁ Role

if the user does not have pdle
Configuration

rights. create—> Dialo

setOpened
RoleConfigDialog

<——getUserManager—

getToken

getTrader

-query(Organizations)

getRoles————>

[AccessDenied or
CHART2Exception}]
showMessageDialog

[error]

for m..ej,f,‘ role, Adialog will be displayed
getRoleFunctionalRights ;n(?lcaung the cause of the
ailure.

[AccessDenied or
CHART2Exception or
InvalidRole]
showMessageDialog

[no configuration
rights]

g
disable all editing
features

how

[role selection changed]
—getRoleFunctionalRights—>

[AccessDenied or
CHART2EXxception or.
InvalidRole]
showMessageDialog

refresh the
functional rights

and organizations
EE—

[clicked on Close or
closed window]
actionPerformed or
onWindowClosing

setOpened
RoleConfigDialog(null)

X

For more details on
specific actions that

can be performed on roles
(Create Role, Delete Role,
Modify Role),

see the appropriate
sequence diagram.

delete

Figure 175. GUIUserManagementModule:ConfigureRoles (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-243 11/20/00

3.13.2.3 GUIUserManagementModule:ConfigureUsers (Sequence Diagram)

This diagram shows how the User Configuration Dialog is invoked. The user clicks on the
“Configure Users” button from the toolbar, which will be disabled unless the user has the
rights: ConfigureUsers or ViewUserConfiguration. The GUIUserManagementModule will
create the UserConfigurationDialog, and it will call the UserManager to get the users and
the user roles. If the user has ViewUserConfiguration rights only, all user configuration
functionality in the dialog will be disabled.

[e]

J/[GUlUserManagement javax.swing. .
Module UserManager Gul JOptionPane TokenManipulator
Administrator -

[clicks on Configure

J—Users (Dolbr?r bundon]—e
This button will actionPerforme: —
be disabled if the configureUsers
user does !
not have the rights:
ConfigureUser or User
ViewUserConfiguration [

create

Dialog
setOpened,
UserConfigDialog
getUserManager getToken—————>
——getUsers—>
[AccessDenied or
. . HART: i
{error} showMessageDialog
[for the first user, |
if anyl: |
getUserRoles i y
[AccessDenied or
CHART: ion or

iUnknownUser]
showMessageDialog

checkAcce:

[no configuration

i
disable all editing

features For more details on A dialog box will be
specific actions that displayed indicating
can be performed on users the cause of the
now (Create User, Delete User, failure.
Grant Role, Revoke Role, =

and Set User Password),
see the appropriate
sequence diagram.

user selection changed]

—getUserRoles—>

[AccessDenied or
HART2Exception or.
{UnknownUser]
showMessageDialog

(2]

[clicked on Close
or closed window]
actionPerformed or
onWindowClosing

setOpened,
UserConfigDialog(null)

Figure 176. GUIUserManagementModule:ConfigureUsers (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-244 11/20/00

3.13.2.4 GUIUserManagementModule:CreateRole (Sequence Diagram)

This diagram shows how a role is added to the system. From the Role Configuration
Dialog, the administrator clicks on “New Role”, and the Create Role Dialog is invoked.
When the administrator clicks “OK”, the dialog will call the UserManager to create the
role. If the role is a duplicate, a message box will be displayed and the administrator will be
given a chance to correct the mistake. If the role was successfully created, it will be added
to the Role Configuration Dialog if it is still open.

Role
Configuration javax.swing. GUIlUserManagement
Administrator Dialog UserManager || JOptionPane gu Module
|_[clicks on New Role]
actionPerformed
create—> CreateRole
Dialog
This will be disabled ’
if the user does not have SHow
sufficient rights.
[clicks OK]
actionPerformed
getToken
getUserManager
createRole———>
ic....[AccessDenied or__
CHART2Exception]
[AccessDenied or
CHART2Exception]———==2>
P [AccessDeniedor . i showMessageDialog T A dialog box will be
CHART2Exception] S R S displayed to the user
<-—-[DuplicateRole}----4 ----....._| indicating the cause of
the failure.
[duplicate role] S
i showMessageDialog
. duplicaterole] !
allow administrator to retype
[success and getOpenedRoleConfigDialog
<—dialog exists}
createdRole
add role ><
to list of
. roles

Figure 177. GUIUserManagementModule:CreateRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-245 11/20/00

3.13.2.5 GUIUserManagementModule:DeleteRole (Sequence Diagram)

This diagram shows how a role is deleted from the system. From the Role Configuration
Dialog, the administrator selects a role and clicks on “Delete Role”. The dialog handles the

command and calls the UserManager to delete the role. If successful, the role is removed
from the displayed list.

Role
Configuration GUlUserManagement javax.swing.
Dialog Module GUI UserManager JOptionPane
Administrator
[clicks on
[—Delete Role]
actionPerformed
k —getUserManager—>
This command getToken
will be disabled if deleteRole
the user does not
have rights. [AccessDenied or
InvalidRole or
RolelnUse or
CHART2EXception]
showMessageDialog
[success] A message dialog will
remove role be displayed to the
from list administrator showing
the reason for the failure.

Figure 178. GUIUserManagementModule:DeleteRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-246 11/20/00

3.13.2.6 GUIUserManagementModule:DeleteUser (Sequence Diagram)

This diagram shows how a user is deleted from the system. The administrator selects a user
and clicks on “Delete User” from the User Configuration Dialog. The dialog calls the
UserManager, which deletes the user from the system. If the user is currently logged in, a
message box will be displayed informing the administrator. If the user is successfully
deleted, the user’s name will be removed from the dialog.

User .]
I Configuration GUIUserManagement avax.swing.
Dialog Module UserManager GUI JOptionPane
Administrator
[clicked on
—Delete User]
actionPerformed
kY get
—getUserManager—>
This command Tok
will be disabled getloxen
if the user does
not have rights. deleteUser
[UnknownUser,
UserLoggedin,
AccessDenied,
CHART2Exception]
[success] showMessageDialog
remove from : .
list ; - - -
; A dialog will be displayed
; indicating the cause of the
; failure.

Figure 179. GUIUserManagementModule:DeleteUser (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-247 11/20/00

3.13.2.7 GUIUserManagementModule:Discovery (Sequence Diagram)

This diagram shows how UserManager objects are discovered. The GUI will call the
GUIUserManagementModule to discover objects, and the module will query the trader for
any published UserManager objects. Then it will try to ping each one until one responds,
and if the ping is successful, it will store the UserManager for later use. Once a
UserManager is stored, it will be pinged first before querying from the trader.

o

GUIUserManagement CosTradina.
Module Lookup UserManager

GUI

——discoverEventChannels—>} . .

TN This does nothing,
as there is no event channel
for this module.

discoverObjects—>

[UserManagerpfi(r)]Lénd previously] S

—query(User Managers)—}

[* for each UserManager
until successful ping|———>

ping

.
[successful ping]
store UserManager

Figure 180. GUIUserManagementModule:Discovery (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-248 11/20/00

3.13.2.8 GUIUserManagementModule:ForceLogout (Sequence Diagram)

This diagram shows how the Force Logout command is performed. The administrator
clicks on the Force Logout button on the toolbar. The GUIUserManagementModule then
creates a ForceLogoutDialog, which displays all of the users from all of the Operations
Centers. When the adminstrator selects a user and hits the Force Logout button on the
dialog, the Operations Center will be called to log the user out.

GUIUserManagement CosTrading.
Module Lookup GUI

[clicked on

OperationsCenter LoginSession

javax.swing.
JOptionPane TokenManipulator

|—Force Logoutt

| actionperfomed | .. gﬁ‘i_nsma‘o
This command LS
il be disabled F—query(Operation Centers)—>{
have rights getToker

I for each Op Ctr]
getLoginSessions

[AccessDenied]

ShowMessageDialog

[* for each login session]
getUsername;

[no ManageUserLogins
right]
disable login

n
functionality

[clicks on Force Logout]

-getOperationsC

i
getToken This happens p
on the remote GUI which
is being forced to log out. s

S [AccessDenied or Log

F—forceLogout—>~”

[AccessDenied]

[AccessDenied or

L }
showMessageDialog
[success]
remove from
list

[clicks on close]
actionPerformed

delete

X

Figure 181. GUIUserManagementModule:ForceLogout (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-249 11/20/00

3.13.2.9 GUIUserManagementModule:GrantRole (Sequence Diagram)

This diagram shows how a role is granted to a user. From the User Configuration dialog,
the administrator clicks on an (unchecked) role checkbox in the role list. The dialog will
mark the role as checked, which assumes a successful operation. Then it will call the

UserManager to grant the role. On failure, a message box will be displayed and the role will
be unchecked.

User
Configuration GUIUserManagement javax.swing.
Dialog Module UserManager GuUl JOptionPane
Administrator
[clicks on
—-unchecked role]—>
‘actionPerformed —
\ set role
k checkbox

This command will Display a message
be disabled if the —getUserManager—> box di

splaying the
user doesn't have rights. cause of the failure.
getToken -
grantRole
[DuplicateRole or
InvalidRole or.
UnknownUser]
showMessageDialog
[error]
clear role
checkbox

Figure 182. GUIUserManagementModule:GrantRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-250 11/20/00

3.13.2.10 GUIUserManagementModule:Login (Sequence Diagram)

This diagram shows the user-specific initialization that is done at login.

% GUIUserManagement
Module

GUI

login

UserManager

getUserProfile

Figure 183. GUIUserManagementModule:Login (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

Profile

3-251

11/20/00

3.13.2.11 GUIUserManagementModule:ModifyRole (Sequence Diagram)

This diagram shows how roles are modified in the system. From the
RoleConfigurationDialog, the adminstrator clicks on a functional right or an organization to
toggle its presence in the role. The dialog retrieves all of the functional rights from its
components, then sets the functional rights by calling the User Manager. If an error occurs,
the correct functional rights for the role are retrieved from the User Manager, and the dialog
is refreshed based on the correct rights.

Role
i Configuration GUIUserManagement javax.swing.
Dialog Module UserManager GUI jo—g‘ ptionPane
Administrator
[clicks on
|___functional right
<" or organization]
actionPerformed ,
getToken
getFunctionalRights
This command will
Sgegrrggg(sj ggtt 'rf]g\}z setRoIeFunct'ionaIRightsﬁ‘
rights. .
[AccessDenied,
InvalidRole,
InvalidFunctionalRight,
CHARTZ2Exception]
showMessageDialog
[failure] ; ;
; T A A message box will be
getRoleFunctionalRights displayed indicating the cause
i of the failure.
[failure]
setRoleFunctionalRIghts
) —|

Figure 184. GUIUserManagementModule:ModifyRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-252 11/20/00

3.13.2.12 GUIUserManagementModule:RevokeRole (Sequence Diagram)

This diagram shows how a role is revoked from a user. From the User Configuration dialog,
the administrator clicks on a (checked) role checkbox in the role list. The dialog will mark
the role as unchecked, which assumes a successful operation. Then it will call the
UserManager to revoke the role. On failure, a message box will be displayed and the role
will be checked.

User
Configuration GUIUserManagement javax.swing.
Dialog Module UserManager GuUI JOptionPane
Administrator
[clicks on
[——Cchecked role]l——>
-~ actionPerformed —
clear role
checkbox
Display a message
This command —getUserManager—>; box showing the reason
will be disabled for the failure.
if the user does not getToken >
have rights. revokeRole
[AccessDenied or
InvalidRole or
UnknownUser or
CHART2Exception]
[error] showMessageDialog
set role i
checkbox

Figure 185. GUIUserManagementModule:RevokeRole (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-253 11/20/00

3.13.2.13 GUIUserManagementModule:Startup (Sequence Diagram)

This diagram shows the actions performed by the GUIUserManagementModule at startup.

1 GUIUserManagement UserManager
Module

GUI

startup

getSystemProfile

Profile

Figure 186. GUIUserManagementModule:Startup (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-254 11/20/00

3.14 GUIUtility

3.14.1 Class Diagrams

3.14.1.1 AudioClasses (Class Diagram)

This diagram shows the classes used to play audio in the GUI.

AudioPushConsumer

=

AudioPushConsumerimpl AudioPushListener

AudioPushConsumerlmpl(AudioPushListener listener) pushAud|0(%(é|%%u;2%g?:)u:n\1/g{cljmpI recipient,
pushAudioProperties (AudioPushConsumerlmpl recipient,

AudioDataFormat format,

long seconds,

long size) : void
pushFailure(AudioPushConsumerimpl recipent,

String error) : void

pushComplete(AudioPushConsumer recipient) : void

Figure 187. AudioClasses (Class Diagram)

3.14.1.1.1 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

3.14.1.1.2 AudioPushConsumerImpl (Class)

This class implements the AudioPushConsumer CORBA interface and delegates the calls to
a AudioPushListener interface.

3.14.1.1.3 AudioPushL.istener (Class)

This is called by one or more AudioPushConsumerlimpls when an audio clip is being
pushed.

R1B2 GUI Detailed Design Rev. 0 3-255 11/20/00

3.14.1.2 FilterClasses (Class Diagram)

This diagram shows the classes that are used to implement Navigator filters in the GUI.
The filters are configurable via the System and User profiles and their purpose is to display
a subset of the available objects in each level of the Navigator tree. Child filters return a
subset of the subset of objects already filtered by the parent.

Uniquelyldentifiable ‘ Menuable ‘ Nav TreeDisplayable Droppable

‘ GUIModelObserver

=

NavTreefilter 1 NavTreeFiltered
—has parent——<>] Objectinstance

m_filterName
m_columnsToShow
m_delegateMenuable

1
{@—has children®- -
NavTreeFilter() cleanup() : void
filterObjects (Object[]):Object(]

addFilteredObject() 0.1
getAllNavProperties() : NavProperty[] DefaultJFrame
setPropertiesDisplayed(Stringf[]) : void

isSystemFilter() : boolean has parent
getkeyNames() : S(rmgﬂ 1
getKeyValue(String) : Stri

setFilter Propemes(ProlllePropertyﬂ) void | *
getParentiD() : ifier
setParenl(NavTree Fllter) void }
addChildFilter(NavTreeFilter) : void has children Displayed Column Basic
doProperties() : void 1 Columns Search Filter
setID(Identifier) : _/cud <>—1 Dialog Filter Properties
getClassName() : String Dialog Dialo
cleanup() : void 9
setDelegateMenuable(Menuable) : void
ColumnSearchFilter NavFolderFilter NavTypeFilter
e o o
m_columnName m_classToKeep
m_searchText
FilterManager NavFilterSupporter
101 1
GuI
addFilter(NavTreeFilter parent, NavTreeFilter newFilter) getFilterCi Token) : P[]
TreeFilter filterTe) : void c i Token, NavTreeFilter parent) : boolean
initializeSystemFilters() : void createDefaultSystemNavFilters() : NavTreeFilter(]

initializeUserFilters() : void

cleanupUserFilters() : void

cleanupSystemFilters() : void

-loadFilters(GUIProfile) : NavTreeFilter[]
-buildFilterHierarchy(NavTreeFilter(]) : void

addFlllerSuppcrler(NavFlIlerSupponev) vold

storeFilterDs (boolean systempFilter:

getDefaultSystemNavFilters() : NavTreeFlIlerl]

getMenultemReps() : MenultemRep|

handleCommand(ActionEvent event, Component invoker) : boolean

Figure 188. FilterClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-256 11/20/00

3.14.1.2.1 Basic Filter Properties Dialog (Class)

This dialog allows a user with rights to edit the properties of the filter (most notably the
name).

3.14.1.2.2 Column Search Filter Dialog (Class)

This dialog allows the user to edit the filter characteristics for the PropertySearchFilter,
which does a text search for columns displayed in the Navigator.

3.14.1.2.3 Displayed Columns Dialog (Class)

This dialog allows the filter to be edited so that each of the columns displayed on the right-
hand side of the Navigator can be toggled on or off.

3.14.1.2.4 Droppable (Class)

This interface must be implemented by any object wishing to take part in a drag and drop
operation. It is used by the DropHandler class to determine if a drop action should be
allowed and to delegate the handling of the drop action after it is performed.

3.14.1.2.5 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the
data model. Observers of this type will be notified of changes on the GUI event dispatch
thread.

3.14.1.2.6 ColumnSearchFilter (Class)

This filter will show any objects whose text value listed in the specified navigator column
contains the specified text.

3.14.1.2.7 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.14.1.2.8 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

R1B2 GUI Detailed Design Rev. 0 3-257 11/20/00

3.14.1.2.9 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenultems() method should return the menu
items to display if the object is singly selected. The getMSMenultems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.14.1.2.10 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.14.1.2.11 NavTreeFilter (Class)

This class serves as a node in the Navigator tree and filters objects to be displayed in the
Navigator. It is an observer to the DataModel so that it can create the
NavTreeFilteredObjectInstance objects for any NavTreeDisplayables that it contains.
(Multiple instances can appear to represent one NavTreeDisplayable object). Filters can be
cascaded to achieve a cumulative filtering effect; that is, a filter appearing under a parent
filter will call the parent filter first to filter the objects, and then it will apply its own
filtering method. The cascading of filters is therefore an “AND” operation. A filter can
either be a system filter or a user-specific filter. System filters can only be modified by
someone with the correct administrative rights, and they can only be added as a child of
other system filters.

3.14.1.2.12 NavTreeFiltered ObjectIinstance (Class)

This class represents an instance of an object which is displayed under a filter. The object
being represented is a NavTreeDisplayable which is neither a NavTreeFilter nor a
NavTreeFilteredObjectinstance, and passes through all of the filters from the root up to the
filter containing this representation. There can be more than one instance of the wrapped
object appearing in the Navigator tree at a given time, under different branches. This object
will delegate all GUI functionality to the object that it represents. The filter will watch the
DataModel to determine when objects are eligible to be displayed under the filter, at which
time it will create a NavTreeFilteredObjectInstance and add it to the DataModel. The
NavigatorDriver will then add the instance to the Navigator tree. Other NavTreeFilter
objects and NavTreeFilteredObjectInstances will ignore the new instance by checking its

type.

R1B2 GUI Detailed Design Rev. 0 3-258 11/20/00

3.14.1.2.13 FilterManager (Class)

This class provides functionality for managing the filters in the system. As it deals with the
singleton GUI and the DataModel objects, it too will be a singleton object. The GUI will
create and hold the FilterManager. Filter supporters can be added to the FilterManager to
support the creation of supporter-specific filter types.

3.14.1.2.14 NavFilterSupporter (Class)

This interface is used to allow type-specific filters to be created by external classes such as
the installable modules. It is called to get the menu items for filter creation, as well as to
create the filter when those menu items are clicked on. It is also called to provide default
system filters for “bootstrapping” the system filters in case the system filters are not loaded
from the system profile.

3.14.1.2.15 NavFolderFilter (Class)

This is a placeholder filter/folder whose purpose is to act as a parent for other filters. This
filter will not filter out any objects, so it does not act as a filter at all.

3.14.1.2.16 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.14.1.2.17 NavTypeFilter (Class)

This filter ignores all objects that are not assignable to a given class or interface. Thus, an
interface or base class can be specified and all of the objects implementing the interface or
extending the base class will be included.

R1B2 GUI Detailed Design Rev. 0 3-259 11/20/00

3.14.2 Sequence Diagrams

3.14.2.1 GUIUtility:AddFilter (Sequence Diagram)

This diagram shows how filters are added to the system. To add a filter, the user must click
on an existing folder. The FilterManager will then call all of the filter supporters to get the
filter creation menu items. If the filter being clicked on is a system filter, either system or
user filters may be added as children. If the filter is a user filter, only user filters may be
added as children. The menu items will also be grayed out if the user does not have rights
to add the appropriate type of filter. After the user clicks on a menu item, the FilterManager
calls each of the filter supporters to create a NavTreeFilter. If the supporter recognizes the
menu item string, it will create the appropriate type of NavTreeFilter and open the
properties dialog corresponding to the filter type. When the user clicks “OK”, the
FilterManager will be called to add the filter to the system. This will add the NavTreeFilter
to the DataModel, and it will also persist the filter properties into the system or user profile
(as appropriate) so that the filter can be reconstructed the next time the GUI is started (for
system filters) or the user logs in (for user filters). (See the sequence diagram
UpdateForFilterChange for more details).

R1B2 GUI Detailed Design Rev. 0 3-260 11/20/00

;: FilterManager

ul
[user right clicks on
[—object in navigator}—>
getMenultemReps

[selection NOT
__consisting of
exactly one

NavTreeFilter]

[* for each
FilterSupporter

NavFilterSupporter

——getFilterCreationMenultems——>

[no ConfigureSelf right]_
null

Menu ltem(s)"
........[no ConfigureUsers right] ________
User Filter MenultemRep[]

FilterSupporter
until one returns
true]

true if handled,

false if not handled

"Add any 'User' Filter

"Add Any 'System' Filter

‘ GUIProfile ‘

IdentifierGenerator

The type of filter will depend o
which menu item was clicked

createldentifier

Menu Item(s)"
WS MenultemRep[]--------1
[<------MenultemRep[]-
[—nhandleCommand—>
—>
cr Filter
[no rights]
o] [wrong menu string] ___________i —
false :
create NavTreeFilter
get
getldentifierGenerator
[* for each

F—setParent——>}
doProperties—>}

——creatt

create

true

[enters filter properties and clicks on OK]
actionPerformed

i <—setFilterProperties—

= [system filter]
getSystemProfile
[user filter],
getUserProfile

[* for each
key]
[

R1B2 GUI Detailed Design Rev. 0

get—
getFilterManager
-addFilter
"Make array
of one filter"

_| This will add the filter to the DataModel.
See the BuildFilterHlerarchy

buildFilterHierarchy sequence diagram for details.
S — i

getkeyName:
/slemFihL.

getKeyValue

“Filter Properties Dialog’

the Profile

The properties will be stored locally
in a Java properties file until logout
(for user profiles) or shutdown

(for system profiles) and will then be
4 exported to the database by calling

's setProperty() method.

setProperty(key,value)

getClassName

storeFliteriDs
(isSystemFilter)

"1 See the StoreFilteriDs
sequence diagram for details

The number 1.
here to repres:
for the filter.

2345 is shown
ent an identifier string

selPropeny("‘NavFilter.12345.className",

Name)

Store the class name

and filter ID so that the filter can
instantiated from the database.

Figure 189. GUIUtility:AddFilter (Sequence Diagram)

3-261

11/20/00

3.14.2.2 GUIUtility:BuildFilterHierarchy (Sequence Diagram)

This diagram shows the building of the filter hierarchy in memory, given an existing
hierarchy and some new filters to be added. It may make several passes through the filters
to be added, each time searching for existing parent filters to add the new filters to. It will
set up the parent/child relationship and add the filter to the DataModel. It will also attach
the filter to the DataModel as an observer so that it will know when new
NavTreeFilteredObjectinstance objects are to be added or removed from the filter.

Add as the root of the tree. Il‘

NavFilter
FilterManager NavTreeFilter (parent) DataModel Gul
System
buildFilterHierarchy———=>
1
"set numAdded = 0"
getParent()
[parent is null] N
getParentID()
[parent and parent ID are both null]]
i objectAdded H g g
[parent is null but parent ID ex'ists]—
getObject (parentID)
[parent e>'<ists]
L addChildFilter —
[* while [not duplicate]
filters "Add"
toadd] px for each [found parent S
NavTreeFilter ——in DataModel]
setParent
get
getDataModel
[parent exists]
I objectAdded
[added to DataModel]
"Remove From
List To Add"
|
[added to DataModel]
“Increment
numAdded”
[added to DataModel]
attachObserver
Sl [numAdded == Q]-----------1

Figure 190. GUIUtility:BuildFilterHierarchy (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-262

11/20/00

3.14.2.3 GUIUtility:CleanupSystemFilters (Sequence Diagram)

This diagram shows the cleanup of the system filters at shutdown. The GUI calls the
FilterManager, which gets all of the NavTreeFilter objects from the DataModel and calls
cleanup on each, thereafter removing them from the DataModel. Each filter detaches itself
from the DataModel as an observer. The filter also cleans up any
NavTreeFilteredObjectinstance objects that it contains.

NavTreeFiltered
FilterManager DataModel NavTreeFilter Obijectinstance
GUI
shutdown

-cleanupSystemFilters—=!

gct
[<—getDataModel—— getAllObjectsOfType____ |
(NavTreeFilter)

cleanup-
get
getDataModel
<—detachObserver
[* for each

<—NavTreeFilteredObjectinstance] cleanup
[* for each objectRemoved w
NavFilter] Remove

Reference Ta
Object”

"Remove All References"

objectRemoved———=>

Figure 191. GUIUtility:CleanupSystemFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-263 11/20/00

3.14.2.4 GUIUtility:CleanupUserFilters (Sequence Diagram)

This diagram shows the cleanup of the user filters at logout. The GUI calls the
FilterManager, which gets all of the NavTreeFilter objects from the DataModel which are
user filters and calls cleanup on each, thereafter removing them from the DataModel. Each
filter detaches itself from the DataModel as an observer. The filter also cleans up any
NavTreeFilteredObjectinstance objects that it contains.

NavTreeFiltered
EilterManager DataModel NavTreeFilter Objectinstance
GUI
loggedOut

[—cleanupUserFilters—>!

gc‘i
<—getDataModel—

getAllObjectsOfType S
(NavTreeFilter)
~ .1 .
[system filter]
skip
- Cleanup
yCL
getDataModel
<——detachObserver:
[* for each
<—NavTreeFilteredObjectinstance]—
[* for each objectRemoved cleanup
NavFilter] "Remove
Reference Ta
Object”
F
"Remove All References"
objectRemoved—=>

Figure 192. GUIUtility:CleanupUserFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-264 11/20/00

3.14.2.5 GUIUtility:InitializeSystemFilters (Sequence Diagram)

This diagram shows the initialization of the system filters at GUI startup. The GUI calls the
FilterManager, which gets the system profiles and attempts to load any existing system
filters from the system profile. If successful, it builds the filter hierarchy and puts the filters
in the DataModel and attaches the filters to observe the DataModel (see the
BuildFilterHierarchy diagram). If no filters are loaded from the system profile, the default
system filters have to be created. The FilterManager creates a root filter (the “CHART2”
filter) and calls each NavFilterSupporter to create their default system filters. If these filters
have a null parent, they are added to the root filter. Then the hierarchy of filters is built and
the filters are added to the DataModel and attached to the DataModel as observers (see the
BuildFilterHierarchy diagram). Then each filter is saved into the system profile so it can be
reconstructed the next time the GUI is restarted.

£

GUI

GUIProfile
(System profile)

NavFilterSupporter IdentifierGenerator

_| See the sequence
je| diagram: "LoadFilters™
for details.
loadNavFilters
S .| See the sequence
et diagram: "BuildFilterHierarchy"
for details

NavFolderFilter

‘ NavTreeFilter

FilterManager

startup
S—

[filters returned]
buildFilterHierarchy
e

If no filters were found, the default
system filters must be created. [&~{filters returned]-—
The root filter is created here. T

t
getidentifierGenerator reateldentifier N
Identifier
create >

getD NavFilters()

[* for each ! Tl The other filters will be
NavFilterSupporter] ravireeritertt generated here. The creator must
> [parent null] make sure that they contain an
¢ cf'orf ea“ch setParent(roof) Identifier.
lefaul
filter] [added to root]
[N addChild(child)
" t
of ke ArTay . This will add the filters to the DataModel.
efault Filters See the sequence diagram BuildFilterHierarchy
=] for details.
buildFilterHierarchy
e
[*foreach [+ for each g
NavTreeFilter] key name] etProperty

.| See the sequence diagram
StoreFilterDs for details

storeFilteriDs(true)

Figure 193. GUIUtility:InitializeSystemFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-265 11/20/00

3.14.2.6 GUIULtility:InitializeUserFilters (Sequence Diagram)

This diagram shows the creation of the user-specific Navigator filters at login. The GUI
calls the FilterManager to load the user filters. The FilterManager then loads the filters (see
the LoadFilters diagram) and establishes the filter hierarchy for the new filters, in addition

to adding them to the DataModel and attaching them to the DataModel as observers (see the
BuildFilterHierarchy diagram).

@]
FilterManager
GUI
loggedin
initializeUserFilters———> | Seethe sequence
_________ diagram: "LoadFilters
____________ for details.

<——getUserProfile

_________ See the sequence
______________ diagram: "BuildFilterHierarchy"
for details

buildFilterHierarchy

Figure 194. GUIUtility:InitializeUserFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-266 11/20/00

3.14.2.7 GUIULtility:LoadFilters (Sequence Diagram)

This diagram shows how the filters are loaded, given a GUIProfile object (which can be
either a system profile or a user profile). First it queries the filter IDs, which are stored as a
delimited sequence of IDs within a given property. Then it separates the IDs. For each filter
ID, it gets the class name for the filter and then creates a new instance of that class. Then it
asks the new filter object to return the keys (properties) that it supports. Then it queries the
profile for the value of each property, and after all of the properties are read, it sets the
properties into the filter object.

GUIUserManagement
EilterManager Module GUIProfile Class DataModel
GUI
[—loadFilters (GUIProfile)—
getProperty("NavTreeFilterIDs")——————>;
S [not found]---=-------4
"Break Up Value
Into Identifier Strings .
and Convert To The number 12345 is shown
\dentifiers” here to represent an identifier string
for the filter.
—
"Construct Key To P
Get Class Name D
Using Identifier String" The type of filter created
< will actually be a specific class
which depends on the class
——getProperty("NavTreeFilter.12345.ClassName")——>} name.
S — Filter Class Namg:----------------}
forName(className)
newinstance
create——> NavTreeFilter
[* for each NavTreeFilter
filter ID string D
found] setlD
getKeyNames
"Construct Key To
Get Filter-Specific
Data Using Fllter"ID These are examples of
[* for each and Key Name | what property keys
k I I ~~1 might be used. Specific
ey name] getProperty("NavTreeFilter. 12345 Name"y——=3" .| filter types would use
- 4 theil ki .
——getProperty("NavTreeFilter.12345.ParentID")—=> €Ir own key names
setFilterProperties(ProfileProperty[])

S NavTreeFilter[]- S

™| The hierarchy of
filters will be constructed
at a later time.

Figure 195. GUIULtility:LoadFilters (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-267 11/20/00

3.14.2.8 GUIUtility:ModifyFilterProperties (Sequence Diagram)

This diagram shows how a filter is modified. The user right clicks on the “Properties” menu
item, from the filter’s context menu. The filter calls doProperties() on itself, which invokes
the appropriate filter properties dialog corresponding to the specific type of filter. When the
user clicks “OK?”, the dialog will set the properties into the filter. The filter will then get the
GUIProfile object (either the system profile or user profile, depending on which type of
filter it is) and will save the properties into the GUIProfile. (See the sequence diagram
UpdateForFilterChange for more details).

The type of filter
{ VVVVVVVVVVVVVV and dialog depend

NavTreeFilter |- onwhich type of filter ul
User was clicked on. —

|__tolicks on "Properties]__s,

GUIProfile DataModel

actionPerformed

“Filter

This menu item and dialog

7| Pproperties.
will be disabled if the user does B Dialog”

not have rights to view or editthe [~
filter.

[edits and clicks OK].

“actionPerformed
i_[* for each property] "
create ProfileProperty

i<—setFilterProperties—}

get

[system filter]
rofile

The filter properties will be stored in a [
- Java Properties object on the local drive
until logout (for user properties) or
shutdown (for system properties), when
the P) method will be
called on the appropriate Profile object to
persist them to the database.

[user filter]
getUserProfile

tProperti

|

[error]
GUIException

[error]
GUIException

—
[error]
"D\sp\ay Error"

ataMc

closeWindow
]

The DataModel will update b
the observers of the changed
filter properties.

Figure 196. GUIUtility:ModifyFilterProperties (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-268 11/20/00

3.14.2.9 GUIULtility:RemoveFilter (Sequence Diagram)

This diagram shows how a filter is removed from the system. The user clicks on the
“Remove Filter” menu item from the filter’s context menu item. The FilterManager then
gets the appropriate GUIProfile (either system or user), and after asking the filter for all of
the key names which it supports, sets all of the property values to null in the GUIProfile.
The GUIProfile will then delete the properties. Finally, the classname will be deleted in the
profile and the filter IDs will be stored (after removing the filter from the DataModel). (See
the UpdateForFilterChange sequence diagram for more details about the cleanup of the

filter).

This menu item will be
disabled if the user does
not have rights to remove
the fiter.

R1B2 GUI Detailed Design Rev. 0

£

User

| [clicks on "Remove Filter" S
[actionPerformed

get

——removeFilter—>

i<—isSystemFiter—

get
[system filter]
getSystemProfie

user filter]
getUserProfile |

Profile

NavTreeFifter ager E \l‘a—"ﬂ EJ

storeFilterIDs

| Store the new set of fiter
.| IDs (which does not contain
{ the ID of the removed fitter).
See the StoreFilteriDs
sequence diagram for
detail

| DataModel as an observer and

will be notified by the DataModel
to clean itself up before being

removed. See the sequence diagram
UpdateForFiterChange for detals.

<—getKeyNames—
per nully
k4
getTokem The appropriate properties in the
lePropert 1 locally-cached Java properties
no rights] file must be deleted also so that
[for each Aocessbentsd they will not be added to the database
key name] when the properties files are
__[other error] persisted at logout or shutdown.
[error] CHART: ! 7
GUiException /
Remove the class name %
-] used for instantiation i/
setProperty("NavTreeFilter.12345.Class ", nully = /
get
9"‘3“’”"“ deleteProfileProperty——>!
| [no rights]
| AccessDenied
[error] [other error]
Sl CHART2Exception
——getDataModet—>{
The filter is attached to the

Figure 197. GUIUtility:RemoveFilter (Sequence Diagram)

3-269

11/20/00

3.14.2.10

GUIULtility:StoreFilterIDs (Sequence Diagram)

This diagram shows how the filter IDs are stored in a GUIProfile. Storing the I1Ds enables
the filters to be reconstructed at startup (for system filters) or login (for user filters). The
FilterManager gets all of the NavTreeFilter objects from the DataModel, and appends the

string IDs of those filters which have the same system/user flag as was requested. The

FilterManager then gets the appropriate GUIProfile and saves the concatenated value into it.

o

A

System

FilterManager

‘ DataModel ‘

NavTreeFilter

‘ Identifier ‘ ‘ GUIProfile ‘

storeFilterIDs.
(useSystemPFilters)

[* for next
filter]

get
getDataMode——>1
getAllObjectsOfType

(NavTreeFilter)

[system flag matches parameter]
getiD

isSystemFilter

[system flag matches

[error]

[system filter flag
matches parameter]
"Append ID string to
cumulative ID string"

[useSystemFilters

is truel
getSystemProfile

[useSystemFilters
is false}
getUserProfile

toString

parameter]

etProperty("NavFilterIDs", "<ID

String>")

[error]

getToken

—setProfileProperties

[no rights]
AccessDenied

[other error]
CHART2Exception

GUIException

GUIException

Figure 198. GUIULtility:StoreFilterIDs (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-270

Profile

11/20/00

3.14.2.11 GUIUtility:UpdateForFilterChange (Sequence Diagram)

This diagram shows the processing that occurs when a filter has been added, modified, or
removed from the DataModel. The filter is an observer of the DataModel, so it also catches
the updates for any changes to itself. If the filter was added or changed, the filter gets all of
the NavTreeDisplayable objects from the DataModel and filters them. The root filter is
called first, then each ancestor down to this filter. Any NavTreeObjectinstances that were
contained in the filter, but whose objects they represent are not in the newly filtered set, are
removed. Any NavTreeDisplayable objects in the newly filtered set but not currently
contained in the filter are wrapped with NavTreeFilteredObjectinstance objects, which then
are added to the DataModel and the filter. If the filter was removed from the DataModel,
then all of the NavTreeFilteredObjectinstance objects are removed from the filter and the
DataModel.

R1B2 GUI Detailed Design Rev. 0 3-271 11/20/00

DataModel

NavTreeFilter

NavTreeFilter

DataModel

update

1
[this NavTreeFilter was
added or updated via
the DataModel]
refreshObjects

get

getAllObjectsOr

filterObjects

[parent not null
filterObjects

Object[]

"Filter The Objects"
e e

[nav instance contained in

[* for each
NavTreeFilteredObjectinstance
contained in filter]

getDataModel

[parent not null] RS

"Filter The Objects"
S —

ilter but Object not in ni
objectRemoved

'Type(NavTreeDisplayable)————————>!

NavTreeFiltered
Objectinstance

This will recursively call the parent
to filter the objects until the root is called.
The root will filter the objects first, then

ewly-filtered set] S

the root's child, etc..

The resulting‘array should now
contain only those Objects which
pass the filter(s).

[removed nav instance]
"R

emove
NavTreeFilteredObjectinstance:
From Collection”

but is not a NavTreeFilter
NavTreeFilteredObjectins

[* for each newly-filtered object
which is a NavTreeDisplayable

or

tance]

(see note)

[created nav instance]
"Add

NavTreeFilteredObjectinstance;
To Collection”

[filter removed]
[* for each
NavTreeFilteredObjectinstance
contained in filter]

[this NavTreeFilter was removed

cleanuy

[Object in set of newly-filtered set but nav instance not contained in filter]. S

create |

[created NavT}eeFiIteredOb]ecllnstaﬁce] S
ob)j

jectAdded

from the DataModel}
detachObserver

ol ‘jeLIREmOVeu

"Remove
NavTreeFilteredObjectinstance
< From Collection’

[filter removed]
"Remove All References”

cleanupt

"Remove References"
)

T 1
"Remove References"

Figure 199. GUIULtility:UpdateForFilterChange (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-272

11/20/00

3.14.2.12 GUIUtility:UpdateForObjectChanges (Sequence Diagram)

This diagram shows the processing that occurs when objects have been added, modified, or
removed from the DataModel. The filter is an observer of the DataModel, so it catches the
updates for any changes to objects. It takes all of the objects that were added or changed
and filters them. The root filter is called first, then each ancestor down to this filter. Any
NavTreeObjectInstances that were contained in the filter, but whose objects they represent
are not in the newly-filtered set, are removed. Any NavTreeDisplayable objects in the
newly-filtered set but not currently contained in the filter are wrapped with
NavTreeFilteredObjectinstance objects, which then are added to the DataModel and the
filter. If the filter was removed from the DataModel, then all of the
NavTreeFilteredObjectinstance objects are removed from the filter and the DataModel. For
any objects that were removed from the DataModel, if they have
NavTreeFilteredObjectinstance objects wrapping them, these wrappers are removed from
the DataModel and from the filter.

o

NavTreeFilter NavTreeFiltered
NavTreeFilter (parent) ‘ GuUI ‘ ‘ DataModel Objectinstance
DataModel
update
[* for each Object
added or changed
via the DataModel]
"Add To Array To Filter"
Y This will recursively call the parent
..~ tofilter the objects until the root is called.
e The root will filter the Objects first, then the
[parent not null 8 ; "
filterObjects root's child, etc..
[parent not null.
filterObjects
"Filter Objects"
« |
 — Objectf]--~=1 K
The resulting array should now
contain only those Objects which
“Filter Objects” &+ . pass the filter(s).
get
getDataModer
[nav instance contained :in filter but Object not in newly-filtered set]
objectRemoved
d nav instance from DataModel]
leanup 1
[* for each c “"Remove References"
NavTreeFilteredO I d nav i P ——

contained in filter]

e
NavTreeFilteredObjectinstance
From Collection"

[Object in newly-filtered set but nav instance not contained in filter]
i create

[* for each newly-filtered object
which is a NavTreeDisplayable
but is not a NavTreeFilter or |
NavTreeFilteredObjectinstance]

z

[created Né TreeFilteredObjectinstance]
objectAdded

(see note)
[created nav instance]

NavTreeFilteredObjectinstance
To Collection”

[corresponding nav instance in filter].

1

o objectRemoved
[* for each Object cleanup
that was removed "Remove "Remove References”
from D dell NavTreeFi €

1stance
From Collection”

Figure 200. GUIULtility:UpdateForObjectChanges (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-273 11/20/00

3.15 HARULility

3.15.1 Class Diagrams

3.15.1.1 HARUJtility (Class Diagram)

This class diagram shows classes related to the HAR that are used by both the GUI and the
server. Most (if not all) of these classes are implementations of value type classes defined in
the system interfaces (IDL).

java lang Runnable
javalang.ThreadGroup
run)

ZT Chart2HARStatusImpl Chart2HARConfigurationimpl HARRPIDatalmpl HARPlanitemDatalmpl

AudioPushThreadManager

na
er,
e
setClipinfo long chunkSize)) 1
~clearClipfo r:\easeAudeushThread() AudioCipsreamer o 1armessage ‘
java.util LinkedList IT N
2 1

getFirst():Object
add(Object)

1 HARAudioClipManager
byte[] m_id
1 1 | HARAudioClipManager(bytel] identifer.

HARAudioClipDB

storeAudioDataClip(HAY
b

removeAudioDataClip(

13
HARMessageClip

‘ HARMessageAudioDataClip ‘ ‘ lip ‘ ‘ lip ‘ ‘ I ‘

1
DB ConnectionManager

taClipimpl lipimpl TextClipimpl lipimpl

Figure 201. HARUtility (Class Diagram)

3.15.1.1.1 AudioClipStreamer (Class)

This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface

3.15.1.1.2 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

R1B2 GUI Detailed Design Rev. 0 3-274 11/20/00

3.15.1.1.3 AudioPushThread (Class)

This class is a thread that is used to push audio clip information to an AudioPushConsumer.

3.15.1.1.4 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to
push audio clip information back to the client. It provides the functionality to manage
access to the AudioPushThreads.

3.15.1.1.5 Chart2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART Il specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

3.15.1.1.6 Chart2HARConfigurationlmpl (Class)

This class is a concrete implementation of the Chart2ZHARConfiguration abstract class
generated from IDL.

3.15.1.1.7 Chart2ZHARStatus (Class)

This class contains status information for a Chart2HAR object. This information is specific
to Chart Il processing and extends beyond the status related to typical HAR device control.

3.15.1.1.8 Chart2HARStatusImpl (Class)

This class is a concrete implementation of the Chart2ZHARStatus abstract class generated
from IDL.

3.15.1.1.9 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two seperate lists namely, inUseL.ist and freeList. The inUseL.ist contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor
thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

R1B2 GUI Detailed Design Rev. 0 3-275 11/20/00

3.15.1.1.10 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic
location of the dictionary and automatic re-discovery should the dictionary reference return
an error. This class also allows for built-in fault tolerance by automatically failing over to a
“working” dictionary without the user of this class being aware that this being done. In
addition, this class defers the discovery of the Dictionary until its first use, thus eliminating
a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently
known good reference to the system dictionary. If the current reference returns a CORBA
failure in the delegated call, this class automatically switches to another reference. When
there are no good references (as is true the first time the object is used), this class issues a
trader query to (re)discover the published Dictionary objects in the system. During a
method call, the trader will be queried at most one time and under normal circumstances
(other than the first use) the trader will not be queried at all.

3.15.1.1.11 HARAudioClipDB (Class)

This class provides access to the database for the HARAudioClipManager. It provides a
means to store and retrieve recorded voice to/from the database.

3.15.1.1.12 HARAudioClipManager (Class)

This class provides the implementation of the AudioStreamer interface and is capable of
streaming recorded audio clips that have been previously stored. When requested to stream
an audio clip, this class pulls the audio data from its persistent store pushes the audio data to
the given AudioPushConsumer in a worker thread. This class also allows newly recorded
audio clips to be added to the system. When a clip is added to the system it is assigned a
unique 1D and a HARMessageAudioClip is created as a thin wrapper to provide access to
the audio data. When new audio clips are added to the system, the ID of the owner is passed
to facilitate clean-up of the clip when it is no longer needed.

3.15.1.1.13 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.15.1.1.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is

R1B2 GUI Detailed Design Rev. 0 3-276 11/20/00

used to stream the actual voice data.

3.15.1.1.15 HARMessageAudioClipImpl (Class)

This class defines HARMessageAudioClip as defined in the IDL. Refer to
HARMessageAudioClip for details.

3.15.1.1.16 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.15.1.1.17 HARMessageAudioDataClipImpl (Class)

This class implements the HARMessageAudioDataClip as defined in the IDL. Refer to
HARMessageAudioDataClip for details.

3.15.1.1.18 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.15.1.1.19 HARMessagelmpl (Class)

This class is a concrete implementation of the HARMessage abstract class generated from
IDL.

3.15.1.1.20 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.15.1.1.21 HARMessagePrestoredClipImpl (Class)

This class implements HARMessagePrestoredClip as defined in IDL. Refer to
HARMessagePrestoredClip for details.

3.15.1.1.22 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

R1B2 GUI Detailed Design Rev. 0 3-277 11/20/00

3.15.1.1.23 HARMessageTextClipImpl (Class)

This class implements HARMessageTextClip as defined in the IDL. Refer to
HARMessageTextClip for details.

3.15.1.1.24 HARPlanltemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.15.1.1.25 HARPIlanltemDatalmpl (Class)

This class is a concrete implementation of the HARPIlanltemData abstract class generated
from IDL.

3.15.1.1.26 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.15.1.1.27 HARRPIDatalmpl (Class)

This class is a concrete implementation of the HARRPIData abstract class generated from
IDL.

3.15.1.1.28 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.15.1.1.29 java.lang. ThreadGroup (Class)

A thread group represents a set of threads.

3.15.1.1.30 java.util.LinkedL.ist (Class)

This class is an implementation of List interface for a linked list.

R1B2 GUI Detailed Design Rev. 0 3-278 11/20/00

3.15.2 Sequence Diagrams

3.15.2.1 HARUtility:PushAudio (Sequence Diagram)

This diagram shows how audio data is pushed back to the client. The
AudioPushThreadManager manages a pool of threads that can be used to push audio data
back to the clients. When a request is made to push audio, the AudioPushThreadManager
looks in the thread list for a free thread. If all the threads are being used, the request waits
until a thread becomes available. Once a thread becomes available, the thread is notified of
the clip by setting the clip data and the thread starts pushing the audio data by first pushing
the audio properties. Then, the thread starts to push the audio data in chunks of the size
requested by the client. If the pushing operation fails, an error is passed to the consumer. At
the completion of pushing, the thread clears the clip data and informs the
AudioPushThreadManager to free the thread. The AudioPushThreadManager in turn frees
the thread and notifies any waiting request.

i ‘ AudioPushTi ‘ m_freeThreads ‘ m_inUseThreads ‘ ‘ AudioPushThread AudioPushConsumer
Client
pus
if a free thread
is not available]
wait
 —
get
<~ AudioPushThread-—
—remove(AudioPushThread)—
Thread)
lipinf
notify
wait
size o
may be less than the
ed.
[while more audio data
no error pushing data] pushAudi
[while not
shutdown]
[error pushing data]
pushFailure
Clear Clip Info
Thr
ad)
F—add(AudioPushThread)—>}
notify

Figure 202. HARUtility:PushAudio (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-279 11/20/00

3.15.2.2 HARUtility:StoreAudioClip (Sequence Diagram)

When a Chart2ZHARImpl or the MessageLibraryDB object have been passed a HAR
message that contains a HARMessageAudioDataClip, the HARAudioClipManager is called
to store the voice data and create a thin wrapper object that represents the voice data. This
thin wrapper is passed around the system instead of the voice data itself. The thin wrapper
contains a reference to the HARAudioClipManager which will push the voice data to any
holders of the thin wrapper that request the actual voice data.

A

Chart2HARImpl HARAudioClipManager IdentifierGenerator HARAudioClipDB

OR
MessageLibraryDB

storeAudioDataClip—>

createldentifier——————>

Identifier

storeAudioClip

stores itself as the streamer
for the audio data in the

[failure] .
CHART2Exception HARAudioClipManager
audio clip.

HARMessageAudioClip

create

S HARMessageAudioClip------1

Figure 203. HARULtility:StoreAudioClip (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-280 11/20/00

3.16 Java Classes

3.16.1 Class Diagrams

3.16.1.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming
language that are used in class and sequence diagrams for other packages within this
design.

javalang.Thread java.sqgl.Statement java.sgl.Connection

javax.swing.JTabbedPane

start()

interrupt()
setDaemon(boolean)
run():void

executeQuery(string query):ResultSet
executeUpdate(string):int

createStatement():Statement

java.lang.Object

javax.swing.JFrame

hashCode()

show

java.util.Hashtable

java.util.Properties

getProperty()

java.util. TimerTask

run

equals() setProperty()

java.util. TreeMap javalang.Runnable java.awt.event.ActionListener java.awt.event.KeyListener

put(Object key, Object value) run() actionPerformed() keyPressed
get(Object key):value keyReleased
keyTyped

javax.swing.table.
AbstractTableModel

javax.swing.tree.

javax.swing.tree.
MutableTreeNode

DefaultTreeModel

java.lang.ThreadGroup

java.io.File java.io.lnputStream javax.sound.sampled.AudioSystem java.util. Timer

schedule
cancel

java.util.LinkedList javax.swing.JOptionPane java.awt.Component java.awt.event.ltemListener

getFirst():Object
add(Object)

showMessageDialog
showOptionDialog

Figure 204. JavaClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-281 11/20/00

3.16.1.1.1 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and

panels.

3.16.1.1.2 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu

items, it is attached to menu items when the menu is built.

3.16.1.1.3 java.awt.event.ltemL.istener (Class)

This interface allows the implementing class to listen for changes to an item such as a list

item or combo box item.

3.16.1.1.4 java.awt.event.KeyL.istener (Class)

Interface that a class must realize in order for objects of that class to be notified when the

user presses a key.

3.16.1.1.5 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

3.16.1.1.6 java.io.InputStream (Class)

Java class that represents a input stream of bytes.

3.16.1.1.7 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

3.16.1.1.8 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.16.1.1.9 java.lang.Thread (Class)

This class represents a java thread of execution.

3.16.1.1.10 java.lang. ThreadGroup (Class)

A thread group represents a set of threads.

R1B2 GUI Detailed Design Rev. 0 3-282

11/20/00

3.16.1.1.11 java.sql.Connection (Class)

This class represents a connection (session) with a specific database.

3.16.1.1.12 java.sql.Statement (Class)
Java class used for executing a static SQL statement and obtaining the results produced by
it.

3.16.1.1.13 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.16.1.1.14 java.util.LinkedL.ist (Class)

This class is an implementation of List interface for a linked list.

3.16.1.1.15 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.16.1.1.16 java.util. Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.16.1.1.17 java.util. TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.16.1.1.18 java.util. TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the
map will be in ascending key order, sorted according to the natural order for the key’s class,
or by the comparator provided at creation time, depending on which constructor is used.

3.16.1.1.19 javax.sound.sampled.AudioSystem (Class)

The AudioSystem class acts as the entry point to the sampled-audio system resources. This
class lets you query and access the mixers that are installed on the system.

R1B2 GUI Detailed Design Rev. 0 3-283 11/20/00

3.16.1.1.20 javax.swing.JFrame (Class)

Java class that displays a frame window.

3.16.1.1.21 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

3.16.1.1.22 javax.swing.JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a
certain page.

3.16.1.1.23 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure
will be used to supply a JTable with data.

3.16.1.1.24 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

3.16.1.1.25 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

R1B2 GUI Detailed Design Rev. 0 3-284 11/20/00

3.17 Navigator

3.17.1 Class Diagrams

3.17.1.1 NavigatorClasses (Class Diagram)

NavigatorSupporter
Navigator
1 1
getNavigables() : Navigable []
makeMenu(selectedNavigables) : JMenu openNavigator(NavigatorSupporter) : Navigator
dragOver(selectedNavigables DropTargetDragEvent) addNavigables(navigables)
drop(selectedNavigables,DropTargetDropEvent) = | updateNavigables(navigables)
navigatorClosing(Navigator) removeNavigables(navigables)
ModelObserver getNavList 1
< A 1
avax.swing.table.
GUINavigatorDriver | 1 javax.swing tree. A{:straclTab?eModel
1 1 DefaultTreeModel
Gul A A\
1 1
NavTree NavList
NavTreeModel NavTableModel
11 m_navTreeDi
11
addNavigables addNavigables
updateNavigables updateNavigables
removeNavigables remo
setSelectedNavTreeDisplayable getNavTreeDisplayable
1 -removeTreeNode setNavTreeDisplayable
1 1
1
* : " Navigabl
javax.swing.tree. 1 java.util. vigab'e
MutableTreeNode Hashtable
1 getimage()
getDesc()
allowSetDesc()
setDesc()
1 .

NavTreeDisplayable NavListDisplayable
getNavParent() : NavTreeDisplayable getPropertyValue(property) : String
containsChildNavigable(Navigable) : boolean comparePropertyValues(property, vall, val2) : int
getChildNavigables() : Navigable[]
getNavPropertyList() : String []

Figure 205. NavigatorClasses (Class Diagram)

3.17.1.1.1 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality that requires the modules to be called. In addition, it stores all of
the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.17.1.1.2 GUINavigatorDriver (Class)

This class handles all of the Navigator-specific functionality for the GUI.

R1B2 GUI Detailed Design Rev. 0 3-285 11/20/00

3.17.1.1.3 java.util. Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any
non-null object can be used as a key or as a value. Objects used as keys implement the
hashCode method that is inherited by all objects from the java.lang.Object class.

3.17.1.1.4 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure
will be used to supply a JTable with data.

3.17.1.1.5 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

3.17.1.1.6 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

3.17.1.1.7 ModelObserver (Class)

This interface must be implemented by any object that would like to attach to the
DataModel as an observer and get updated as system objects are added, deleted or changed.

3.17.1.1.8 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the
left or right side (the tree or list view). This includes the functionality common to both the
tree and list.

3.17.1.1.9 Navigator (Class)

This class represents one instance of the Navigator window. It supplies methods for
opening the Navigator window and for maintaining the collection of Navigables after the
Navigator is open.

3.17.1.1.10 NavigatorSupporter (Class)

This interface must be implemented by any subsystem that supports invoking the
Navigator. It must be able to supply the Navigable objects, and also can support user
interaction with the selected Navigable objects through menus and drag/drop.

R1B2 GUI Detailed Design Rev. 0 3-286 11/20/00

3.17.1.1.11 NavList (Class)

This class represents the right hand side of the Navigator window (the list or report). It
contains functionality for changing the NavTreeDisplayable to refill the list, and also for
maintaining the Navigables in the list after the Navigables belonging to the
NavTreeDisplayable are already displayed.

3.17.1.1.12 NavL.istDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

3.17.1.1.13 NavTableModel (Class)

This class will serve as the data structure for the right hand side of the Navigator, and will
be the foundation of the JTable that will display the data stored in the model.

3.17.1.1.14 NavTree (Class)

This class represents the left-hand side of the Navigator window - the tree view. It contains
functionality for maintaining the NavTreeDisplayable objects that are in the tree.

3.17.1.1.15 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of
the Navigator (the tree view). This contains all of the functionality to support the tree data
structure and also provides the property list (column headers) which will be displayed in the
list view when the NavTreeDisplayable is selected.

3.17.1.1.16 NavTreeModel (Class)

This class will provide the data structure that will support the tree structure on the left hand
side of the Navigator.

R1B2 GUI Detailed Design Rev. 0 3-287 11/20/00

3.17.2 Sequence Diagrams

3.17.2.1 Navigator:AddNavigables (Sequence Diagram)

o

N

Navigable
Adder

[———addNavigables

This diagram shows what happens in the Navigator when Navigable objects are added.
First, the Navigables are passed to the NavTree. The NavTree will then build a list of any
NavTreeDisplayables to add. For each element in the list, it checks the hash table to
determine whether the parent (if any) is already in the tree. If the parent is in the tree or
there is no parent, a new MutableTreeNode will be created and inserted into the
DefaultTreeModel, and the NavTreeDisplayable will be put into the hash table. Each
NavTreeDisplayable that is added to the tree is removed from the list to be inserted. As
long as one or more nodes were inserted during a given pass through the list, another pass is
attempted (for the next level of the tree). Then the Navigables are added to the NavList.
This will check each Navigable to see if it is a NavListDisplayable and if its parent is the
selected NavTreeDisplayable. If both are true, the NavListDisplayable will be added to the
list.

NavListDisplayable

NavList ‘

!

ava.uti))
i javax.swing.tree. javax.swing.tree.
Navigatol NavTree NavTreeDi Hashtable e abioTieaNods | | DefaultTreeModel

&

A hash table of
MutableTreeNode:
which have already

[* for each Navigable been inserted in
implementing NavTreeDisplayable] the tree.
add to list to be inserted -

getParent
[NavTreeDi has parent]
get |
[NavTreeDisplayable does not have parent
[listis not —————————or parent already in treef———————————————>}

empty and [* for next create
at least one NavTreeDisplayable i

node was inserted in list]
on this pass] repeat

repeat [inserted MutableTreeNode]
put
|
[inserted MutableTreeNode]
remove NavTreeDisplayable from
list to be inserted

[created MutableTreeNode],
i insertNodelnto

getNavTreeDisplayable
|

turn off
redraw

[is child]

insertinto list [for next Navigable

implementing

NavListDisplayable]

i___[*for each property] S repeat
getPropertyValue

turn redraw on

-
[NavListDisplayables
added to list]

repaint window

Figure 206. Navigator:AddNavigables (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-288 11/20/00

3.17.2.2 Navigator:Initialize (Sequence Diagram)

This diagram shows how the Navigator is initialized. The openNavigator method will create
a new Navigator window and the tree and list views. The Navigator will then query the
NavigatorSupporter to provide it with all Navigable objects. The Navigables are added to
the NavTree (see the Navigator:AddNavigables diagram for details). Then the root node is
set as the selected node in the NavTree. See the Navigator: TreeSelectionChange sequence
diagram for details on the effects of this.

X

: Navigator
Navigator . Qavigator
Ope?ner Navigator Supporter
[—openNavigator—>>
1
create
create NavTree
NavList
——getNavigables—
addNavigables———_
~~~~~ ™ See the AddNavigables
sequence diagram for
more details.
—setSelectedNavTreeDisplayable
S Navigator-------
~..| See TreeSelectionChange
sequence diagram
for more details.

Figure 207. Navigator:Initialize (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-289 11/20/00



3.17.2.3 Navigator:RemoveNavigables (Sequence Diagram)

This diagram shows how Navigables are removed from the Navigator. Each
NavTreeDisplayable to removed causes removeTreeNode to be called. This is a recursive
call, which calls removeTreeNode first on each of its children. The children are removed
first so that every tree node below the current node is cleaned out of the hash table. If the
NavList is displaying the children of the node that is being destroyed, then we set the
NavTreeDisplayable in the list to the parent. Then the NavTreeDisplayable is removed from
the hash table and also from its parent. The Navigables to be removed are then passed to the
NavList, which removes and NavListDisplayables in the list matching any of the
Navigables to be removed.

o

; : java.util. avax.swing.tree.
Navigable Navigator NavTree NavTreeDisplayable Hashtable DefaultTreeModel
Remover

[—removeNavigables—>}
—removeNavigables—>

oes this...

‘ -
[
Em oveTreeNode 5
d 4'_

getNavLis.ﬁ

[* for each Navigable
implementing
NavTreeDisplayable]
removeTreeNode

-getChildNavigables:

* for each child
implementing NavTreeDisplayabl

NavList

This is a recursive call.

e] i The child nodes are
removed first to allow them
to be removed from the
hash table. i

=8
@

getNavTreeDisplayabl

[current node in NavList

getParent

[curr

node to be removed]

ent tree node in NavList == node to be removed]

setNavTreeDisplayable(parent)

remove

[node found]

removeNodeFromParent

removeNavigables,

For each Navigable k
being removed

getNavTreeDisplayable

turn off redraw

find

[found]
remove

Figure 208. Navigator:RemoveNavigables (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-290

11/20/00



3.17.2.4 Navigator:TreeSelectionChange (Sequence Diagram)

This diagram shows what happens when a tree selection change takes place. The NavTree
calls the NavList and sets the NavTreeDisplayable. This will cause all objects to be

removed from the NavList. The NavList will ask the new NavTreeDisplayable for its
properties (columns). Then the NavList will ask the NavTreeDisplayable for its children,
which will all be inserted into the list. Each item inserted will be called for each
column/property to supply the property value.

£

Java

Swing
or other i i NavTreeDisplayable
Selection NavTree Navigator NavList
Changer
selection change
notification
or
setSelectedNavTreeDisplayable F——getNavList—>
setNavTreeDisplayable—>

turn off
redraw

remove all

NavListDisplayables

getPropertyList———>

[* for each property]
insert column

getChildNavigables———>!

[* for each
NavListDisplayable]
insert into list

[* for each NavListDis

getPropertyVall

turn on redraw

repaint window

[DCE:417]

playable]

[* for each property]

e

NavListDisplayable

Figure 209. Navigator:TreeSelectionChange (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0

3-291

11/20/00



3.18 Shazam Utility

3.18.1 Class Diagrams

3.18.1.1 SHAZAMUtility (Class Diagram)

This diagram shows SHAZAM related classes that are shared between the server and the
GUL.

SHAZAMStatus SHAZAMConfiguration
boolean m_activated string m_name;
CommunicationMode m_commMode string m_location
Identifier m_controllingOpCitriD string m_phoneNumber
string m_controllingOpCtrName Direction m_direction
NetworkConnectionSite m_networkConnectionSite HAR m_har
long m_refreshintervalMins
factory createSHAZAMStatus(): SHAZAMStatus
A factory createSHAZAMConfiguration(): SHAZAMConfiguration
SHAZAMStatusimpl SHAZAMConfigurationimpl

Figure 210. SHAZAMUtility (Class Diagram)

3.18.1.1.1 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.18.1.1.2 SHAZAMConfigurationlmpl (Class)

This class provides an implementation of the SHAZAMConfiguration valuetype as defined
in the IDL. This class provides access to values relating to the configuration of a
SHAZAM.

3.18.1.1.3 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.18.1.1.4 SHAZAMStatusimpl (Class)

This class implements the SHAZAMStatus valuetype as defined in the IDL. It provides
access to values relating to the current status of a SHAZAM.

R1B2 GUI Detailed Design Rev. 0 3-292 11/20/00



3.19 System Interfaces

3.19.1 Class Diagrams

3.19.1.1 AudioCommon (Class Diagram)

This class diagram shows the classes relating to Audio.

AudioEncoding TTSPriority Uniquelyldentifiable TextEmbeddedTag

PCM _SIGNED USER string MorningAfternoonEvening

PCM_UNSIGNED SYSTEM

A LAW getiD()

U_LAW getName()

1 | replaces
1
1
* 1 1 1

AudioDataFormat TTSConverter
AudioEncoding m_encoding;
float m_sampleRate; *
long m_sampleSizelnBits; 1 * | getSupportedFormats(void):AudioDataFormatList; AudioPushConsumer
long m_channels; convertTextToSpeech(string text, AudioData
long m_frameSize; AudioDataFormat format,
float m_frameRate; long maxChunkSize,
boolean m_bigEndian; TTSPriority priority, 1 * | pushAudio(AudioData data):void

) _ AudioPushConsumer consumer) pushAudioProperties (AudioDataFormat format,
getVoiceLength(string text, long seconds
dioDataFormat format, long size):voiél .
1 AudioPushConsumer consumer) pushFailure(string errMsg):void
*
AudioClipStreamer
* 1
streamAudioClip(ldentifier id,
long maxChunkSize, 1

AudioPushConsumer consumer):void

UnsupportedAudioFormat AudioClipNotFound

AudioDataFormatList supportedFormats; string reason;

Figure 211. AudioCommon (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-293 11/20/00



3.19.1.1.1 AudioClipNotFound (Class)
This exception is thrown by an AudioClipStreamer if asked to push an audio clip which it
cannot find.

3.19.1.1.2 AudioClipStreamer (Class)
This interface is implemented by objects that can push a previously stored audio clip given
its ID. The audio data is pushed via the AudioPushConsumer supplied by the user of this
interface.

3.19.1.1.3 AudioData (Class)
This typedef is a sequence of bytes that contain audio data. This data is used in conjunction
with AudioDataFormat to decode the data into voice.

3.19.1.1.4 AudioDataFormat (Class)

This struct specifies the format of audio data.

3.19.1.1.5 AudioEncoding (Class)

This enum defines the supported types of encoding for audio data.

3.19.1.1.6 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push
model, where the server pushes the data to the consumer. One call to pushAudioProperties()
will always precede any calls to pushAudio().

3.19.1.1.7 TextEmbeddedTag (Class)

This interface defines constants for tags that may be embedded in text that is passed to the
TTSConverter. The TTSConverter replaces the tags it finds in text prior to converting the
text to speech. The MorningAfternoonEvening tag is replaced with the text ‘morning’ when
the conversion takes place between 00:00 and 11:59, “afternoon’ from 12:00 through 16:59,
and ‘evening’ from 17:00 to 23:59.

3.19.1.1.8 TTSConverter (Class)

This interface represents the Text to Speech converter object that allows text to be passed in
and speech to be returned.

R1B2 GUI Detailed Design Rev. 0 3-294 11/20/00



3.19.1.1.9 TTSPriority (Class)

This enum defines the types of priorities that can be used when asking the TTSConverter to
convert text to speech.

3.19.1.1.10 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.19.1.1.11 UnsupportedAudioFormat (Class)

This exception is thrown when a specific AudioDataFormat is requested from an object that
does not support the given format.

R1B2 GUI Detailed Design Rev. 0 3-295 11/20/00



3.19.1.2 CommLogManagement (Class Diagram)

This Class Diagram shows the classes used for passing information between processes to
enable creating, pushing, viewing, and searching Communications Log entries.

Loglterator LogEntryData LogEntryList
CommLogEventType 9 LogEntryDataList 9 Y 9 Y
long timeOfLastUse String entryText sequence LogEntry
LogEntryAdded sequence LogEntryData | 1 + | |dentifier trafficEventiD
getMoreEntries(long maxCount) : LogEntryList
destroy():void
1
1
LogFilter CommLog LogEntry
TimeStamp m_startDate 1 1 TimeStamp m_timestamp
TimeStamp m_endDate 1 * | Identifier m_eventiD
Identifier eventiD getEntries(AccessToken token, LogFilter filter, string m_text
string m_opCenterName long maxCount, LogEntryList entries) : Loglterator string m_author
string m_containsText addEntries(AccessToken token, LogEntryDatalist logEntries) : void string m_opCenterName
factory createLogFilter() : LogFilter equals() : boolean

factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

Figure 212. CommLogManagement (Class Diagram)

3.19.1.2.1 CommL.og (Class)

This class manages log entries. These can be general Communications Log entries or
specific log entries for a specific Traffic Event. This class is the primary interface for the
CommLog service. It is used to persist log entries in the CHART Il system and retrieve
them for review. Log entries can be created directly by users or indirectly as a result of
manipulating Traffic Events.

3.19.1.2.2 CommLogEventType (Class)

This enumeration lists the possible events that the CommsLog service may push via the
CORBA event service. At present, only one event is defined, the addition of a new
LogEntry to the database.

3.19.1.2.3 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 GUI Detailed Design Rev. 0 3-296 11/20/00



3.19.1.2.4 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.19.1.2.5 LogEntryDataL.ist (Class)

The LogEntryDataL.ist is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataL.ist will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

3.19.1.2.6 LogEntryList (Class)

The LogEntryList is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.
The initial request returns a Loglterator from which additional LogEntryL.ist sequences can
be requested, in order to complete the entire query.

3.19.1.2.7 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.19.1.2.8 Loglterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a Loglterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 GUI Detailed Design Rev. 0 3-297 11/20/00



3.19.1.3 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

Uniquelyldentifiable GeolLocatable UserName
NetworkConnectionSite

getiD() String getLocationDesc()
getName()
CommandStatus Service TimeStamp Password
update(String status):void ping():void
completed(String final_status) getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

Direction

CHART 2Exception SpecifiedObjectNotFound NORTH
SOUTH
string reason string reason EAST

string debug WEST
INNER_LOOP

OUTER_LOOP

AccessDenied UnsupportedOperation InvalidState

string reason string reason string reason
string requiredRights

Figure 213. Common (Class Diagram)

3.19.1.3.1 AccessDenied (Class)

This class represents an access denied, or “no rights” failure.

3.19.1.3.2 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very
generic exceptions which require no special processing by the client. It supports a reason
string that may be shown to any user and a debug string that will contain detailed
information useful in determining the cause of the problem.

R1B2 GUI Detailed Design Rev. 0 3-298 11/20/00



3.19.1.3.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.19.1.3.4 Direction (Class)

This enumeration defines direction of travel.

3.19.1.3.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.19.1.3.6 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid
state to perform the operation.

3.19.1.3.7 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the Chart2DMSStatus.

3.19.1.3.8 Password (Class)
Typedef used to define the type of a Password.

3.19.1.3.9 Service (Class)

This interface is implemented by all services in the system that allow themselves to be
shutdown externally. All implementing classes provide a means to be cleanly shutdown and
can be pinged to detect if they are alive.

3.19.1.3.10 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object
that cannot be found by the invoked object.

3.19.1.3.11 TimeStamp (Class)
This typedef defines the type of TimeStamp fields.

R1B2 GUI Detailed Design Rev. 0 3-299 11/20/00



3.19.1.3.12 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

3.19.1.3.13 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which
it is called.

3.19.1.3.14 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

R1B2 GUI Detailed Design Rev. 0 3-300 11/20/00



3.19.1.4 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.

CommunicationMode

OperationalStatus

ONLINE
OFFLINE
MAINT_MODE

OK
COMM_FAILURE
HARDWARE_FAILURE

CommEnabled

ArbitrationQueue

ArbQueueEntry

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putinMaintenanceMode(Access Token, CommandStatus):void

getCommMode() :CommunicationMode

addEntry(AccessToken, ArbQueueEntry):void
removeEntry(AccessToken, byte[] trafficEventID):void
eventTypeChanged(AccessToken, TrafficEvent):void;
eventTransferred(AccessToken token,

TrafficEvent trafficEvent,

Identifier opCenterID,

string opCenterName):void;

TrafficEvent m_trafficEvent
byte[] m_trafficEventiD
Message m_message
boolean m_inProgress
boolean m_active

boolean m_deleted
boolean m_updated

CommpFailure DisapprovedMessageContent

string reason; WordList disapprovedW ords
string debug; string reason

long errorCode;

Message

validateMessageContent():void;

ArbQueueEntry(TrafficEvent, Message):ArbQueueEntry
getTrafficEvent():TrafficEvent

getTrafficEventID():byte[]

abstract setActive(String deviceName, String msg):void
abstract setlnactive(String deviceName, String msg):void
abstract setFailed(String deviceName, String errorMsg):void

Figure 214. DeviceManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

3-301

11/20/00



3.19.1.4.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
gueue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.19.1.4.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.19.1.4.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.19.1.4.4 CommpFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating
with a device.

R1B2 GUI Detailed Design Rev. 0 3-302 11/20/00



3.19.1.4.5 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.19.1.4.6 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are
not approved. This exception is also thrown if an attempt is made to put the device in an
invalid display state, such as putting the Beacons ON for a blank DMS.

3.19.1.4.7 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.19.1.4.8 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

R1B2 GUI Detailed Design Rev. 0 3-303 11/20/00



3.19.1.5 DictionaryManagement (Class Diagram)

This class diagram shows the interfaces used for the dictionaries.

WordList DictionaryWordType
DMS_WORD
HAR_WORD
1
1
*
DictionaryWord 1

string m_word

long m_wordTypeBitmask DictionarySuggestion

getWord():string; DictionaryWord m_misspelledWord

getWordType():long; . o WordList m_replacements

factory create(string word, long bitmask):DictionaryWord

getMisspelledWord():DictionaryWord
* getReplacements():WordList
factory create(DictionaryWord word,
WordList replacements):DictionarySuggestion
1.*
1
Uniquelyldentifiable Dictionary 1
SuggestionList
getID() Q """""""""""""""" getBannedWords(AccessToken):WordList
getName() removeBannedWordList(AccessToken,WordList):void
addBannedW ordList(AccessToken,WordList):void

checkForBannedWords(string messageToCheck,

string delimiters,

DictionaryWordType wordType):WordList
getApprovedW ords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedW ordList(AccessToken, WordList):void
performApprovedW ordsCheck(string messageToCheck,

string delimiters,
DictionaryWordType wordType):SuggestionList

DictionaryEventType

BannedWordsAdded
BannedWordsRemoved
ApprovedWordsAdded
ApprovedWordsRemoved

Figure 215. DictionaryManagement (Class Diagram)

DictionaryEventinfo

Identifier dictionarylD
WordList listOfWords

3.19.1.5.1 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that
are approved or banned from being used in a CHART2 messaging device. Examples of

messaging devices are

R1B2 GUI Detailed Design Rev. 0

DMS, HAR, etc.

3-304

11/20/00



3.19.1.5.2 DictionaryEventlInfo (Class)

This interface encapsulates the data that is passed with a dictionary CORBA event. It
contains information identifying the dictionary, and the list of words affected by the event.

3.19.1.5.3 DictionaryEventType (Class)

This represents the enumerations used for the different CORBA event types applicable to
the dictionary module.

3.19.1.5.4 DictionarySuggestion (Class)

A DictionarySuggestion represents a list of suggested words that may be used as a
substitute for the word that could not be found in the approved words dictionary database.

3.19.1.5.5 DictionaryWord (Class)

A DictionaryWord represents a word in the chart2 dictionary. It contains information that
qualifies the type of devices that the word applies to.

3.19.1.5.6 DictionaryWordType (Class)

3.19.1.5.7 SuggestionL.ist (Class)

This interface represents the IDL sequence typedef for the DictionarySuggestion.

3.19.1.5.8 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

3.19.1.5.9 WordList (Class)

This interface represents the IDL sequence typedef for the DictionaryWord.

R1B2 GUI Detailed Design Rev. 0 3-305 11/20/00



3.19.1.6 DMSControl (Class Diagram)

DMsEvent DMSEventType

DNSEventType <discriminator>
entiier dmsiD - forDMSDeleted 1

DMSAdded
DMSDeleted

CurrentDMSStatus
DWSConfigurationEventinfo dmsConfighfo OMSConfgChanged

DMSStatusEventino statushio

OVSEvenTyoe s
ovSConigl

PlantemData
JAN

‘ vioaie] (s [
N
e -
9EDVSID0: werter s

SeDVS(DMS
aethssaqeiD Kortier

MULTIParseFall

string reason

DMsList 1

sequence DMSList

DMSFactory

1| GetbmsL

DWSLst

21D (Access Token token, DVSConfiguration config) : DMS

blarkSign(Access Token token, CommandStatus status) : void
getConigurasen(iccessToken foken)  DVEConfiguraton
getSttus() : DS

IsBlanl

pollNow(AccessToken token, CommandStatus status) : void
DUONSVanNode(AscessToten, CommandStatus siaus): void
PUIDMSOniine(Access Token token, CommandSatus stalus) :
emove(AccessToken oken) o

void
Token, wscunnumum Conli Commandstatus stats) - vod

FontMetrics
short fortHeight
Short characterWidh | 1 1 DMSConfiguration
subgm_name
g m e
T amsSartype
e 1
FonNetrics m_forthetrics
S—— long m_pages.
SignMetrics long m_dmsTimeCommLoss

BeaconType m dmsBeaconType

long vmsSignHeightPixels long m_defaultJustificatonLine

long vmsSignWidthPocels 1 1/ jor defaultPageOnTi
short vmsCharacterHeightPixels | ———@ 1ond M_defauibageQntime.
short vms CharacterWidthPixels long m_defauiipageOTime.

factory creaxeDMSCnnﬁumannn()
e Clruraon
i .

1

BeaconType

Sellessage(AccessToken token, DV e message, CommandStatus status) : ok
TG cessToken ke, CommandSs Seres v0a

F
M FALURE e Message
b e N e WuLTisiing
¢
1 1
/ :
P '
Dwssias OwSHessage

booleanm_beaconState

n_ commhioce >

BeaconTypeValues

other =1

none = 2
oneBeacon = 3
woBeaconSyncFast
ete.

Chart2DMSConfiguration

fong m_fmsDevicelD

GperationalStatus m_op:
ShortErrorStatus m, s!\or\EnovSvams
long m_siatusChangeTim:

factory createDMSStatus() : DMSSiatus.

octetm
MULTISiring m_dmsessageMuliSting

getBeaconState( : oct
SESng) MU Tiing
GetMnimumCharacters() - long

{ActorycreateDNSeSsage(MULTIString muliStinghessage.
octet beaconsState) : DMSMessage

HARMessageNotifier

deactiaiermNolEe(AccessT
SHARNotieAGIIe() booler

SharedResource

()
getDirection():Direction
setDirection(Direction) void

actuateHARNlce(AccessToken TraficEvent, CommandStaus)od
oken, TraffcEvernt, CommandSiatus)-void

Setnssocaie dHARLk::—ssTuken ChantzHAR)void
Char

SharedResourceManager

Chart2DMSFactory

Chart2DMSStatus
ChartzoMs
entifier m_controlingOpCeneriD 1
1 1 1| stinam controlingOpCenterName.
B emuraion m DMSRPIDala
smnum evcephanehumber getarbirationQueue() : ArbitrationQueue 1
factory createCharZDMSStatus() : Chart2DMSStatus ChartzDMs m_dm:
sting erformTesting(AccessToken, festType, long terations, CommandStatus status) : vob
ES deviceCommSting o performTesting(AccessToken, DMSTestType, long erations, C dStatus status) : void y | Ovebeseage mmessage
long m_deviceDropAddress K N N
fona mdeviceResponseTimeout geiDMS() : Chart2DMS
string m_deviceMaxBai Getiesseqel) | DNSWessage
DMSWessage m_shazamessage NetworkConnectianSite SEDvS Crar 218 o
fotessagelONENess20) s 1o
1 factory create DMswmnm
J FPOS00Status. Data
octet m_currentsghum h
K octet m_cunentvsgSouce e
factory createFPIS00Status() : FP9S00Status
DMSTestType FPO500DMS
e DMSRandom
DMSPermutation
n. oid | .

ArbQueueEntry

Ent

_cmdstatus

Figure 216. DMSControl (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

3-306

11/20/00



3.19.1.6.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
gueue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.19.1.6.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.19.1.6.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the
BeaconTypeValues class. It is a part of a DMSConfiguration object.

3.19.1.6.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices
(number of beacons and whether and in what manner they flash).

R1B2 GUI Detailed Design Rev. 0 3-307 11/20/00



3.19.1.6.5 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to
be used in manipulating the Chart Il-specific DMS objects within Chart Il. It provides a
method for getting the DMSArbitrationQueue for a Chart Il DMS, which can then be used
by traffic events to provide input as to what each traffic event desires to be on the sign. It
also provides a method to perform testing on a sign. This method can be extended by
derived classes for specific models of signs, which know how to perform certain types of
testing on their specific model of sign. Chart Il business rules include concepts such as
shared resources, arbitration queues, and linking devices usage to traffic events, concepts
which go beyond what would be industry-standard DMS control.

3.19.1.6.6 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the
DMSConfiguration class to provide configuration information specific to Chart Il
processing. Such information includes how to contact the sign under Chart 1l software
control, the default SHAZAM message for using the sign as a HAR Notifier, and the
owning organization. Such data extends beyond what would be industry-standard
configuration information for a DMS.

3.19.1.6.7 Chart2DMSFactory (Class)

The Chart2DMSFactory class extends the DMSFactory interface to provide additional
Chart 11 specific capability. This factory creates Chart2DMS objects (extensions of DMS
objects). It implements SharedResourceManager capbility control DMS objects as shared
resources.

3.19.1.6.8 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class that extends the DMSStatus class to
provide status information specific to Chart Il processing, such as information on the
controlling operations center for the sign. This data extends beyond what would be
industry-standard status information for a DMS.

3.19.1.6.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

R1B2 GUI Detailed Design Rev. 0 3-308 11/20/00



3.19.1.6.10 CommunicationMode (Class)

The CommunicationMode class enumerations the modes of operation for a DMS: ONLINE,
OFFLINE, and MAINT_MODE. The DMSStatus class contains a value of this type.

3.19.1.6.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign
(DMS) objects within Chart 1l. It specifies methods for setting messages and clearing
messages from a sign (in maintenance mode), polling a sign, changing the configuration of
a sign, and reseting a sign. (Setting messages on a sign in online mode are not accomplished
by manipulating a DMS directly; that is accomplished by manipulating traffic events, which
interfaces with the DMSArbitrationQueue of a sign. This activity involves the DMS
extension, Chart2DMS, which defines interactions with signs under Chart 1l business rules.)

3.19.1.6.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used
for most standard entries placed on the arbitration queue. When its setActive, setlnactive,
and setFailed methods are called, it adds a log entry to its traffic event and calls the
appropriate method on its response plan item (setActive, setlnactive, or update).

3.19.1.6.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract class that describes the configuration of a DMS
device. This configuration information is normally fairly static: things like the size of the
sign in characters and pixels, its name and location, and how to contact the sign (as opposed
to dynamic information like the current message on the sign, which is defined in an
analogous Status object).

3.19.1.6.14 DMSConfigurationEventinfo (Class)

The DMSConfigurationEventinfo class is the type of DMSEvent used for DMSEventType
DMSConfigChanged. It contains a DMSConfiguration object that details the new
configuration for a Chart Il DMS object.

3.19.1.6.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS
operations which can be pushed on an Event Channel to update event consumers on DMS-
related activities. The four types of events, defined by the enumeration DMSEventType,
are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

R1B2 GUI Detailed Design Rev. 0 3-309 11/20/00



3.19.1.6.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the four types of events relating to
DMS operations which can be pushed on an Event Channel to update event consumers on
DMS-related activities. The four types of events are: DMSAdded, DMSDeleted,
CurrentDMSStatus, and DMSConfigChanged.

3.19.1.6.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the
Chart 11 system. It also provides a method to get a list of DMS devices currently in the
system.

3.19.1.6.18 DMSL.st (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory
and other classes for maintaining the list or other lists of DMS objects.

3.19.1.6.19 DMSMessage (Class)

The DMSMessage class is an abstract class that describes a message for a DMS. It consists
of two elements: a MULTI-formatted message and beacon state information (whether the
message requires that the beacons be on). The DMSMessage is contained within a
DMSStatus object, used to communicate the current message on a sign, and so within a
DMSRPIData object, used to specify the message that should be on a sign when the
response plan item is executed.

3.19.1.6.20 DMSPIlanltemData (Class)

The DMSPIanltemData class is a valuetype that contains data stored in a plan item for a
DMS. It is derived from PlanltemData.

3.19.1.6.21 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.19.1.6.22 DMSStatus (Class)

The DMSStatus class is an abstract value-type class that provides status information for a
DMS. This status information is relatively dynamic: things like the current message on the
sign, its beacon state, its current operational mode (online, offline, maintenance mode), and
current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More
static information about the sign, such as its size and location, is defined in an analogous
Configuration object.)

R1B2 GUI Detailed Design Rev. 0 3-310 11/20/00



3.19.1.6.23 DMSStatusEventinfo (Class)

The DMSStatusEventinfo class is the type of DMSEvent used for DMSEventType
CurrentDMSStatus. It contains a DMSStatus object that details the new status for a Chart 11
DMS object.

3.19.1.6.24 DMSTestType (Class)

The DMSTestType enumeration identifies two types of tests which can be performed on
DMS devices: random and permutation.

3.19.1.6.25 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information
regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

3.19.1.6.26 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class that extends the
Chart2DMSConfiguration class to provide configuration information specific to an FP9500
model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a
specific brand and model of sign for manufacturer-specific configuration information.

3.19.1.6.27 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed
interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixel Test
method, which knows how to invoke and interpret a pixel test as supported by the FP9500
model DMS.

3.19.1.6.28 FP9500Status (Class)

The FP9500Status class is an abstract class that extends the Chart2DMSStatus class to
provide status information specific to an FP9500 model of DMS. It is exemplary of
potentially a whole suite of subclasses specific to a specific brand and model of sign for
manufacturer-specific configuration information. In this case, additional information
provided the FP9500 model includes the current message number and current message
source.

3.19.1.6.29 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

R1B2 GUI Detailed Design Rev. 0 3-311 11/20/00



3.19.1.6.30 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices that
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.19.1.6.31 HARNOotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry
used for entries that are placed on the arbitration queue to put a “SHAZAM” message on a
DMS. These types of messages have a low priority and are not allowed to overwrite any
standard message (from a DMSArbQueueEntry) that is currently displayed on a device.
These types of messages are also different in that they are not added to the queue directly
by a response plan item and are instead included as a sub-task of activating a message on a
HAR. The HAR uses a command status object to track the progress of the HAR notifier
message.

3.19.1.6.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.
3.19.1.6.33 MULTIParseFailure (Class)
The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS
message cannot be correctly parsed.
3.19.1.6.34 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class
contains a MULTIString value to specify the content of the sign, in addition to the beacon
state value.

3.19.1.6.35 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is
running. This field is useful for administrators in debugging problems should an object
become “software comm failed”. It is included in the Chart2DMSStatus.

R1B2 GUI Detailed Design Rev. 0 3-312 11/20/00



3.19.1.6.36 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a DMS can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure). The
DMSStatus class contains a value of this type.

3.19.1.6.37 PlanltemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the

operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.19.1.6.38 ResponsePlanltemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

3.19.1.6.39 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.19.1.6.40 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.6.41 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined
by the NTCIP center to field standard for DMS that specifies error conditions that may be
present on the device. This class is used to encapsulate the bit mask and provide a user-
friendly interface to the error conditions. The DMSStatus class contains a value of this type.

R1B2 GUI Detailed Design Rev. 0 3-313 11/20/00



3.19.1.6.42 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information
regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration
object.

3.19.1.6.43 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the
SignTypeValues class. It is a part of a DMSConfiguration object.

3.19.1.6.44 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are
bos, cms, vmsChar, etc.

3.19.1.6.45 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

R1B2 GUI Detailed Design Rev. 0 3-314 11/20/00



3.19.1.7 PlanManagement (Class Diagram)

This class diagram contains the interfaces used in the creation and management of plans. A
plan is a group of actions that are set-up in advance to be used in response to a traffic event.
Given the unpredictable nature of traffic events, pre-defined plans are usually only useful
for congestion, safety messages, and weather-related messages.

Uniquelyldentifiable

getiD()
getName()
PlanltemList
1
PlanFactory Plan 1.*
1 * 1 * Planltem
setName(AccessToken,string):void
createPIan(,AtqcessTokgrg,ltoken, addlitem(AccessToken,PlanitemData):Planitem
string name):Plan removeltem(AccessToken,Planitem):void ) A
getPlans():PlanList getitems():PlanitemList setName(AccessToken, string):void
remove(AccessToken):void setData(AccessToken, PlanitemData):void
isUsingObject(IdentifierList objectiDs) getData():PlanitemData
remove(AccessToken):void
1% getPlanID():dentifier
- isUsingObject(IdentifierList):boolean
1
PlanEventType
PlanAdded
PlanRemoved
PlanitemAdded
PlanitemRemoved 1 1
PlanNameChanged
PlanitemChanged PlanList Planitem Data
isUsingObject(ldentifierList objectlDs):boolean
PlanAddedEventinfo PlanNameChangeEventinfo
Plan thePlan Identifier planiD
Identifier planiD string newName
PlanltemAddedEventinfo PlanltemRemovedEventinfo PlanltemChangedEventinfo
Planitem planitem Identifier planiD Planitem thePlanitem;
Identifier planiD Identifier planitemID PlanitemData itemData;
Identifier planitemID string itemName;
Identifier planiD;
Identifier planitemID;

Figure 217. PlanManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-315 11/20/00



3.19.1.7.1 Plan (Class)

A Plan is a group of actions that are listed out in advance to be used in response to a traffic
event. Each action is defined to be a Plan item. The Plan supports functionality to add and
remove plan items.

3.19.1.7.2 PlanAddedEventinfo (Class)
The PlanAddedEventinfo class defines the data passed in the PlanAdded event.

3.19.1.7.3 PlanEventType (Class)

The PlanEventType class is an enumeration that describes the types of events that can be
pushed for plans. When a plan item is added or modified it is up to the derived item type to
push the appropriate type of event.

3.19.1.7.4 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans that can be used in the
system.

3.19.1.7.5 Planltem (Class)

This class represents an action within the system that can be planned in advance. This
CORBA interface is subclassed for specific actions that can be planned in the system.

3.19.1.7.6 PlanltemAddedEventinfo (Class)

The PlanltemAddededEventinfo class defines the data passed in the PlanltemAdded event.

3.19.1.7.7 PlanltemChangedEventinfo (Class)

The PlanltemChangedEventinfo class defines the data passed in the PlanltemChanged
event.

3.19.1.7.8 PlanltemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes
contain specific data that map a device to an operation and the data needed for the
operation. For example a derived class provides a mapping between a specific DMS and a
DMSMessage.

3.19.1.7.9 PlanltemList (Class)

The PlanltemList class is simply a collection of Planltem objects.

3.19.1.7.10 PlanltemRemovedEventinfo (Class)

The PlanltemRemovedEventinfo defines the data passed in the PlanitemRemoved event.

R1B2 GUI Detailed Design Rev. 0 3-316 11/20/00



3.19.1.7.11 PlanL.ist (Class)

The PlanList class is simply a collection of Plan objects.

3.19.1.7.12 PlanNameChangeEventinfo (Class)

The PlanNameChangeEventiInfo class defines the data passed in the PlanNameChanged
event.

3.19.1.7.13 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.

R1B2 GUI Detailed Design Rev. 0 3-317 11/20/00



3.19.1.8 HARControl (Class Diagram)

This class diagram contains the interfaces used relating to the control of Highway Advisory
Radio (HAR).

HARMessageAudioClip

HARMessageTextClip

HARMessagePrestoredClip

HARMessageAudioDataClip

AudioDataFormat m_audioDataFormat

\denlmer m_audioCliplD
m_streamer

string m_messageText

HARSIotNumber slotNumber

getMessageText():string

xt(string) void

getSlotNumber():HARSIotNumber
setSlotNumber(HAR SlotNumber):void

AudioData m_audioData stream(in long maxChunkSize, stream(in long maxChunkize, factory lip
in AudioPushConsumer consumer:void in AudioDataFormat format,
factory createAudioDataCl(n AudoataFormat formar, | | factory createAudioCip(entiter. ‘AudioPushConsumer consumer):void
AudioData data):HARMessageAudioDataClip AudioStreamer):HARMessageAudioClip factory CreateTextClip(8tring text) HARNesSageTex(Clip
1 - HARPlanitemData
StoredMessage HARMessageClipList
Identifier m_hariD I ‘ ‘
onim narto i ‘ . ‘ | seoLocatabie Message
identifier m_storedVsgiD
Direction m_direction
HARFactory 1
factory createHARPlanitemData()
sring HARPlantemData
createHAR(AccessToken, ”
HARConfiguration) : HAR HARMessage
getHARs():HARList
HARMessageClip m_header
1 1 HARMessageClipList m_body
HARMessageClip m_traller
HAR boolean m_useDefaultHeader «
. boolean m_useDefaultTrailer HARMessageClip
1 0.1
string m_description
selcor HAR Configuration, CommandStatus):void long m_voiceSeconds
) : HARCunﬁguralmn 1 1.
e AR Sat getDescription():string
SharedResourceManager Token, C )-void setDescription(string):void
blank(Access Token, CommandStatus) void ‘ 1 « | getvoiceSeconds()long
, g Iip, ):void
CommandStatus):void
Token,
CommandStatus):void
isBlank():boolean
Chart2HARFactory reset(AccessToken, CommandStatus) vnld 1 1
on HARConfiguration
oSt O A conaTokan. ComandStatus)void
setTransmitterOn(Access Token, CommandStatus)-void string m_name
Token, C Yovoid string m™deviceLocation
HARStatus string m_devicePhoneNumb
1 1 string m dewceMonnorPnoneNumber

HARMessageCiip m defaultricader
HARMessageClip m_defaultTrailer
long m_interMessageSpacingSecs

ge m_
HARSIotDataLisim_slotData
. boolean m_transmitteron
1 | CommMode m_commMode

SharedResource
A\

1 HARList long m_maxStoredVoiceSeconds
[onvatoncuese F-——— factory createHARStatus O HARSIauS P, ST ——
14
ArbQueueEntry Chart2HARStatus
AN 1 Chart2HAR 1 1 | Identifier m_controllingOpCtriD
ht string m_controllingOpCtrName
NetworkC m_networkCs Chart2HARConfiguration
getArbitrationQueue():ArbitrationQueue factory createChart2| ):C Status DList m_
factory createChart2HARConfiguration()
HARArbQueueEntry Py 1| Chart2HARConfiguration
ResponsePlanitem m_resp 1 1
HARMsgNotifieriDList m_notifiersToActivate

HARMessageNotifier

HARSlotUsagelndicator HARRPIData

DefaultHeader

DefaultTrailer

DefaultMessage

ImmediateMessage
.

Chart2HAR m_har
HARMessage m_message
HARMsgNotifieriDList m_msgNotifiers ToActivate

HARSIotNumber HARSIotData HARSIotDataList

HARSIotNumber slotNumber
HARMessageClip slotMessageClip
HARSIotl ot

HAREventType HARConfigurationEventinfo HARStatusChangedEventinfo

HARAdded HAR theHAR dentifier id
HARRemoved dentifier id HARStatus status
HARStatusChanged HARConfiguration config

RConfigurationChanged

Figure 218. HARControl (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-318 11/20/00



3.19.1.8.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The arbitration queue
determines the proper message to be displayed on a device and switches the active message
based on conditions present within the system.

For R1B2, the arbitration queue will have a single slot (and is therefore not really a queue).
The device arbitration rules used by the arbitration queue in R1B2 rely on user rights and
operations centers. When the arbitration queue’s slot is in use, another message can only be
added to the queue if the user adding the message is from the same operations center that is
responsible for the existing message, or the user has a special functional right that allows
this rule to be overridden.

The arbitration queue can be interrupted to keep it from performing its automated
processing. This mode is used to allow maintenance on the device being arbitrated by the
gueue without having the queue’s automatic processing interfere with the maintenance
activities.

When an interrupted arbitration queue is taken out of its interrupted state through the use of
the resume method, the arbitration queue evaluates the messages in the queue and restores
the device to the proper state. For R1B2, the arbitration queue performs no special
processing when resumed because the queue cleans itself when interrupted and does not
allow new entries while interrupted.

3.19.1.8.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue for a single message for a single
traffic event / response plan item. The class holds the associated message, traffic event, and
response plan item.

3.19.1.8.3 Chart2HAR (Class)

The Chart2HAR class is an extension of the HAR that is aware of Chart2 business rules,
such as arbitration queues, linking device usage to traffic events, and the concept of a
shared resource.

3.19.1.8.4 Chart2HARConfiguration (Class)

This class contains configuration data for the HAR that is used for CHART Il specific
processing (as opposed to the configuration values contained in HARConfiguration that
relate to typical HAR usage).

R1B2 GUI Detailed Design Rev. 0 3-319 11/20/00



3.19.1.8.,5 Chart2HARFactory (Class)

This interface defines objects capable of creating Chart2HAR objects. This factory is also
responsible for monitoring the HARs as shared resources and must report when a HAR that
is currently broadcasting a message (other than the default) does not have a user logged into
the system that is from the controlling operations center.

3.19.1.8.6 Chart2HARStatus (Class)

This class contains status information for a Chart2HAR object. This information is specific
to Chart Il processing and extends beyond the status related to typical HAR device control.

3.19.1.8.7 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.19.1.8.8 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.19.1.8.9 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to
broadcast traffic related information over a localized radio transmitter, making the
information available to the traveler.

3.19.1.8.10 HARArbQueueEnNtry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a
traffic event. This entry also specifies the HARMessageNotifiers to be activated when the
message is activated.

3.19.1.8.11 HARCo onfiguration (Class)

This class contains configuration data for a HAR device.

3.19.1.8.12 HARConfigurationEventInfo (Class)

This class defines data pushed with a HARConfigurationChanged and HARAdded CORBA
event.

R1B2 GUI Detailed Design Rev. 0 3-320 11/20/00



3.19.1.8.13 HAREventType (Class)
This enumeration defines the types of CORBA events that are pushed on a HARControl
event channel.

3.19.1.8.14 HARFactory (Class)
This CORBA interface allows new HAR objects to be added to the system.

3.19.1.8.15 HARL st (Class)
The HARLIst class is simply a collection of HAR objects.

3.19.1.8.16 HARMessage (Class)

This utility class represents a message that is capable of being stored on a HAR. It stores
the HAR message as a HAR message header, body and footer. It contains methods to input
and output them in different formats.

3.19.1.8.17 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is
passed around the system instead of passing the actual voice data. When the actual voice
data is needed to play to the user or to program the HAR device, this object’s streamer is
used to stream the actual voice data.

3.19.1.8.18 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.
Because audio data can be very large, this type of clip is reserved for use when recorded
voice is first entered into the system. Recorded voice that already exists in the system is
passed throughout the system using HARMessageAudioClip to avoid sending the large
audio data when possible.

3.19.1.8.19 HARMessageClip (Class)

This class represents a section of a HAR message. It can be either plain text that would
need to be converted to audio prior to broadcast, or binary format (MP3, WAV, etc.)

3.19.1.8.20 HARMessageClipL.ist (Class)
The HARMessageClipList is a collection of HARMessageClip objects.

R1B2 GUI Detailed Design Rev. 0 3-321 11/20/00



3.19.1.8.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices which
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.19.1.8.22 HARMessagePrestoredClip (Class)
This class stores data used to identify the usage of a clip that has already been stored on a
HAR device.

3.19.1.8.23 HARMessageTextClip (Class)

This class represents a HAR message content object that is in plain text format. This
message can be checked for banned words and will be converted into a voice message using
a speech engine to broadcast on a HAR device.

3.19.1.8.24 HARPlanltemData (Class)

This class is used to associate a message with a HAR for use in Plans.

3.19.1.8.25 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.19.1.8.26 HARSIotData (Class)

This struct defines the data used to identify the contents of a slot in the HAR controller.

3.19.1.8.27 HARSIotDataL ist (Class)
The HARSIotDataL.ist class is simply a collection of HARSIotData objects.

3.19.1.8.28 HARSIotNumber (Class)

The HARSIotNumber is an integer used to specify slot numbers on a HAR controller.

3.19.1.8.29 HARSIotUsagelndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

R1B2 GUI Detailed Design Rev. 0 3-322 11/20/00



3.19.1.8.30 HARStatus (Class)

This class contains data that indicates the current status of a HAR device.

3.19.1.8.31 HARStatusChangedEventinfo (Class)

This class contains data that is pushed when the HARStatusChanged CORBA event is
pushed on the HARControl event channel.

3.19.1.8.32 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.19.1.8.33 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.19.1.8.34 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.8.35 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.19.1.8.36 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-323 11/20/00



3.19.1.9 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers,
user login sessions, and organizations.

Uniquelyidentifiable

getiD()

getName()

Organization

OperationsCenter

loginUser(UserL
UserName name
string password,
string hostname):AccessToken
Icgouluser(AccessToken token,
UserLoginSession qumsesslon) void
changeUser(AccessToken tokel
UserlLoginSession oldSesswon
UserLoginSession nEWSeSSIOH
jserName userNam
smng password) AccessToken
getC ist
gelLoglnSesslcns() ch\nSess\onL\st
forceLogout(Access Token token,
JserLoginSession \ogmsessmn) vowd
is Userchged\n(UserName userNam e):boole:
getNumLoggedinUsers():lo
lransfersharedResources(AccessToken token,
SharedResourceList resources,
OperationsCenter targetOpCenter):void
verifyUserPassword(UserName userName,
string password):boolean
addResponseParticipant(Access Token token,
RespunsePamclpant pamcnpant) void
removeResponseParticipant(Access Token to}
‘ espﬂnsePamc\pam participant) : void
s P ipant(]

SharedResource

SharedResourceManager

getControllingOpCenter():dentifier
getControllingOpCenterName():string
getOwnerOrgID():Identifier

getResaurces(): SharedResourceL it
etC il

D)
hasControlledResources(ldentifier OpCtrID) boolean

TransferrableSharedResource

SharedResourceList

identifier opCtriD,
string opCtrName)

void setControllingOpCenter(AccessToken token,

void clearControllingOpCenter(AccessToken token)

ResponseParticipant

UserLoginSession

LoginSessionList

string m_nam
RosponsebaticipantType m_type

getOpCenter()Operatons Center
getUsemame():UserNam

1

ping():boolear
void fcrceLogout(AccessToken token)

ResponseParticipantType

TYPE_ORGANIZATION
TYPE_UNIT

TYPE RESOURCE
TYPE_SPECIAL_NEEDS

HasControlledResources

ResourceControlConflict

string reason

string reason
string controllingOpCenterName:

ResourceEventType

LoginFailure

LogoutFailure InvalidOperationsCenter

ControllingOpCtrChang:

jed
UnhandledControlledResourcesEvent

string reason

string reason string reason

Ir ControllingOpCtrC

Identifier opCtriD
string opCtrName

dentifier resourcelD
string  opCtrName

dentifier opCtriD

Figure 2109.

R1B2 GUI Detailed Design Rev. 0

3-324

ResourceManagement (Class Diagram)

11/20/00



3.19.1.9.1 ControllingOpCtrChangeEventinfo (Class)
The ControllingOpCtrChangeEventinfo class defines data to be passed on a
ControllingOpCtrChange event.

3.19.1.9.2 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do
something which requires that no resources be controlled, yet the Operations Center which
the user is logged in to is still controlling one or more shared resources.

3.19.1.9.3 InvalidOperationsCenter (Class)
Exception which describes a failure caused when the operations center specified is not valid
for the attempted operation.

3.19.1.9.4 LoginFailure (Class)

This class represents an exception that describes a login failure.

3.19.1.9.5 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects.

3.19.1.9.6 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

3.19.1.9.7 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is
used to log users into the system. If the username and password provided to the loginUser
method are valid, the caller is given a token that contains information about the user and the
functional rights of the user. This token is then used to call privileged methods within the
system. Shared resources in the system are either available or under the control of an
OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it
can ensure that the last user does not log out while there are shared resources under its
control. This list of logged in users is also available for monitoring system usage or to force
users to logout for system maintenance.

3.19.1.9.8 Organization (Class)

The Organization interface extends the Uniquelyldentifiable interface and will represent an
organization, that is an administrative body that can control or own resources.

R1B2 GUI Detailed Design Rev. 0 3-325 11/20/00



3.19.1.9.9 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the
resource is under the control of a different operations center and the requesting user does
not have the functional right to override the restriction.

3.19.1.9.10 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types.

3.19.1.9.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure that specifies a participant in a
response.

3.19.1.9.12 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a
response to an event. This could be an external organization, a mobile unit, a mobile device
or special purpose vehicle, or a special needs vehicle equipped to handle unusual or
hazardous situations.

3.19.1.9.13 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

3.19.1.9.14 SharedResourceL.ist (Class)

A SharedResourceList is simply a collection of SharedResource objects.

3.19.1.9.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.9.16 TransferrableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is
implemented by SharedResource objects whose control can be transferred from one
operations center to another.

R1B2 GUI Detailed Design Rev. 0 3-326 11/20/00



3.19.1.9.17 UnhandledControlledResourcesinfo (Class)
The UnhandledControlledResourcesEvent class is an event pushed when it is detected that
an OperationsCenter is controlling one or more controlled resources but has no users logged
in.
3.19.1.9.18 Uniquelyldentifiable (Class)
This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure unigueness.
3.19.1.9.19 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is
logged into the system. This object is served from the GUI and provides a means for the
servers to call back into the GUI process.

R1B2 GUI Detailed Design Rev. 0 3-327 11/20/00



3.19.1.10

HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message

notifications. The HAR notifiers can be SHAZAMSs or DMS devices that are acting as

SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from overwriting another

type of DMS message.

CommEnabled

SharedResourceManager

‘ SharedResource

‘ Uniquelyldentifiable

SHAZAMFactory

Uniquelyldentifiable

Geolocatable

HARMessageNotifier

activateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
deactivateHARNotice(AccessToken, TrafficEvent, CommandStatus):void
isHARNoticeActive() : boolean

setAssociatedHAR (AccessToken, Chart2HAR):void

getAssociatedHAR() : Chart2HAR

getDirection():Direction

setDirection(Direction):void

SHAZAMConfiguration

SHAZAM 1

createSHAZAM(AccessToken,
SHAZAMConfigData) : SHAZAM

setBeaconsOn(AccessToken, CommandStatus):void
setBeaconsOff(AccessToken, CommandStatus):void
refresh(AccessToken, CommandStatus):void
setConfiguration(AccessToken, SHAZAMConfigData, CommandStatus)
getConfiguration(AccessToken) : SHAZAMConfigData

string m_name;

string m_location

string m_phoneNumber
Direction m_direction

HAR m_har

long m_refreshintervalMins

factory createSHAZAMConfiguration(): SHAZAMConfiguration

getStatus() : SHAZAMStatus
remove(AccessToken):void

SHAZAMStatus

boolean m_activated
CommunicationMode m_commMode
Identifier m_controllingOpCtriD

string m_controllingOpCtrName

NetworkConnectionSite m_networkConnectionSite

factory createSHAZAMStatus (): SHAZAMStatus

SHAZAMEventType
SHAZAMConfigurationEventinfo SHAZAMStatusChangeEventinfo
SHAZAMAdded
SHAZAMRemoved SHAZAM theSHAZAM Identifier id
SHAZAMStatusChanged Identifier id; SHAZAMStatus status
SHAZAMConfigurationChanged SHAZAMConfiguration config
Identifier
HARMsgNotifierIDList
m_id
1 1
@ Identifier(byte[] chartiD)

equals(Object obj)

hashCode()

byte[] getiD()

Figure 220. HARNotification (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

3-328

11/20/00



3.19.1.10.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enbled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.19.1.10.2 GeoLocatable (Class)
This interface is implemented by objects that can provide location information to their
users.

3.19.1.10.3 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that
can be used to notify the traveler to tune in to a radio station to hear a traffic message being
broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device
to better determine if activation of the device is warranted for the message being broadcast
by the HAR. This interface can be implemented by SHAZAMSs and by DMS devices which
are allowed to provide a SHAZAM-like message in the absence of any more useful
messages to display.

3.19.1.10.4 HARMsgNotifierIDList (Class)
This typedef is a sequence of HARMessageNotifier identifiers.

3.19.1.10.5 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.19.1.10.6 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an
operations center responsible for the disposition of the resource while the resource is in use.

R1B2 GUI Detailed Design Rev. 0 3-329 11/20/00



3.19.1.10.7 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared
resources. Implementing classes must be able to provide a list of all shared resources under
their management. Implementing classes must also be able to tell others if there are any
resources under its management that are controlled by a given operations center. The shared
resource manager is also responsible for periodically monitoring its shared resources to
detect if the operations center controlling a resource doesn’t have at least one user logged
into the system. When this condition is detected, the shared resource manager must push an
event on the ResourceManagement event channel to notify others of this condition.

3.19.1.10.8 SHAZAM (Class)

This class is used to represent a SHAZAM field device. This class uses a helper class to
perform the model specific protocol for device command and control.

3.19.1.10.9 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device.

3.19.1.10.10 SHAZAMConfigurationEventinfo (Class)

This class contains data that is pushed on the SHAZAMControl CORBA event channel
with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

3.19.1.10.11 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control
event channel.

3.19.1.10.12 SHAZAMFactory (Class)
This CORBA interface allows new SHAZAM objects to be added to the system.

3.19.1.10.13 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device.

3.19.1.10.14 SHAZAMStatusChangeEventinfo (Class)

This class contains data that is pushed on a SHAZAMControl event channel with a
SHAZAMStatusChanged event.

3.19.1.10.15 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-330 11/20/00



3.19.1.11

LibraryManagement (Class Diagram)

This class diagram shows all classes and relationships relating to message libaries.

Uniquelyldentifiable

getiD()
getName()

StoredMessageList

JAN

LibraryAdded
LibraryRemoved
LibraryNameChanged
StoredMessageAdded
StoredMessageRemoved
StoredMessageChanged

Identifier msgIiD
Identifier libID

string description
string category
string lastModifiedBy
Message msg

1.%
MessageLibrary StoredMessage
MessageLibraryFactory
1 *
1
setName(AccessToken token, string name):void getMessageData():StoredMessageData
createLibrary(AccessToken token,string name):MessageLibrary createStoredMessage(AccessToken token, getMessage():Message .
getLibraryList():MessageLibraryList Message msg, setMessage(AccessToken, Message):void
string description, setMessageData(AccessToken token,
string category):StoredMessage string description,
getStoredMessages():StoredMessageList string category,
isUsedByAnyPlan():boolean Message msg):void
isMessageUsedByAnyPlan(Ildentifier msgID):boolean remove(AccessToken):void
removeMessage(AccessToken, StoredMessage):void
remove(AccessToken):void
1
1.*
1
1
MessageLibraryList
Message
LibraryEventType StoredMessageData

validateMessageContent():void;

StoredMessageAddedEventinfo

StoredMessageRemovedEventinfo

LibraryAddedEventinfo

LibraryNameChangedEventinfo

StoredMessage storedMsg;;
StoredMessageData msgData;

Identifier msgID
Identifier libID

Identifier id;
MessagelLibrary lib;

Identifier id;
string name;

string name;

Figure 221. LibraryManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

3-331

11/20/00



3.19.1.11.1 LibraryAddedEventinfo (Class)
This struct defines data passed with a DMSLibraryAdded event.

3.19.1.11.2 LibraryEventType (Class)

This enum defines the types of events that can be pushed on a LibraryManagement event
channel.

3.19.1.11.3 LibraryNameChangedEventinfo (Class)

This struct defines data passed with a LibraryNameChanged event.

3.19.1.11.4 Message (Class)

This class represents a message that will be used while activating devices. This class
provides a means to check if the message contains any banned words given a Dictionary
object. Derived classes extend this class to provide device specific message data.

3.19.1.11.5 MessageL.ibrary (Class)

This class represents a logical collection of messages that are stored in the database.

3.19.1.11.6 MessageLibraryFactory (Class)

This class is used to create new message libraries and maintain them in a collection.

3.19.1.11.7 MessageL.ibraryL.ist (Class)

A collection of MessageL.ibrary objects.

3.19.1.11.8 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains
attributes such as category and message description which are used to allow the user to
organize messages.

3.19.1.11.9 StoredMessageAddedEventinfo (Class)

This struct defines the data passed with a StoredMessageAdded event.

3.19.1.11.10 StoredMessageData (Class)

This structure defines the data stored in a StoredMessage.

R1B2 GUI Detailed Design Rev. 0 3-332 11/20/00



3.19.1.11.11 StoredMessageL.ist (Class)

A collection of StoredMessage objects.

3.19.1.11.12 StoredMessageRemovedEventinfo (Class)

This struct defines data passed with a StoredMessageRemoved event.

3.19.1.11.13 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-333 11/20/00



3.19.1.12 LogCommon (Class Diagram)

This class diagram contains all interfaces that are necessary to multiple log types within the
CHART Il system.

LogEntryData LogEntryList
Loglterator LogEntryDatalList 9 4 9 Y
- String entryText sequence LogEnt
long timeOfLastUse sequence LogEntryData | 1 1 * Identi%ier tr;fﬁcEventlD i o=ty
getMoreEntries(long maxCount) : LogEntryList
destroy():void

1“*
LogFilter LogEntry
TimeStamp m_startDate . .
TimeStamp m_endDate TimeStamp m_timestamp
= Identifier m_eventID

Identifier eventlD string m  text
string m_opCenterName Ing m_{
string m_contains Text string m_author

- string m_opCenterName
factory createLogFilter() : LogFilter equals() : boolean

factory createLogEntry() : LogEntry
hashCode() : int
matchesFilter(LogFilter filter) : boolean

Figure 222. LogCommon (Class Diagram)

3.19.1.12.1 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

3.19.1.12.2 LogEntryData (Class)

LogEntryData is a collection of data required to create one Log Entry, consisting of text
(the body of the event) and an ID that refers to a Traffic Event, if appropriate.

3.19.1.12.3 LogEntryDataL.ist (Class)

The LogEntryDataL.ist is simply a sequence of LogEntryData objects, each of which
contain the data needed to create one Log Entry. Normally each LogEntryDataL.ist will
contain only one LogEntryData object, but if the CommLog service is unavailable for a
time, it is possible that multiple LogEntryData objects may be queued up for insertion into
the database.

R1B2 GUI Detailed Design Rev. 0 3-334 11/20/00



3.19.1.12.4 LogEntryL.ist (Class)

The LogEntryL.ist is simply a sequence of LogEntry instances returned to a requesting
process in one clump. (Some requests return so much data that data is returned in clumps.

The initial request returns a Loglterator from which additional LogEntryL.ist sequences can
be requested, in order to complete the entire query.

3.19.1.12.5 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the

Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.19.1.12.6 Loglterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a Loglterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

R1B2 GUI Detailed Design Rev. 0 3-335 11/20/00



3.19.1.13

TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

TrafficEventFactory

getName() : string
createTraffic Event(AccessToken token,
icEventType
BasicEventData eventData,
LogEntry(] initialEntries): TrafficEvent
getTrafficEvents():TrafficEvent[]
ane

Cor ):LaneConfiguration]]
i)

ResponseParticipation

tP: Data() : Data
setNolmed(AccessToken token,

boolean hasBeenNotified) : void
overrideNotificationTime(AccessToken token
imeStam p notific: auunTlme) void
remove(AccessToken token) : void

OrganizationParticipation

ResourceDeployment

selArnvedOnScene(AccessToken token,
boolean hasArrived) : void
setDepartedFromScene(AccessToken token,

long laneOffsetFromLeft,
TimeStamp timeOpenedOrClosed):void

TrafficEvent oolean hasDeparted) : void
setRespondedToEvent(AccessToken token, overrideArrivalTimi e(AccessToken token,
boolean hasResponded) : void imeStamp arrivalTime) : void
overrideRespondedTime(AccessToken token, C‘Vef"deDepaﬂUTETlme(ACCESSTDken token,
addLogEnlry(AccessToken token, TimeStamp respondedTime) : void TimeStampdepartureTime) : void
ext):void 1
add ResponseParllclpal\on(AccessToken token,
ResponseParticipationData rpdata):void
addResponseltem(AccessToken token,
. ResponsePlanlternDala rpid):void
e oot v hssociate ResponsePlantem > ResponsePlantembata
boolean primary): void '
removeEventAssociation(Access Token token,
[eflccien et eTagero e ey e
changeType(AccessToken token, execute(AccessToken token):void isExecutable() : boolean
TrafficEventType nev’vaemType)'void 1 * selltemDaIa(AccessTDken token, execute(AccessToken token,
close(AccessToken token):void : > PlanitemData data):void TrafficEvent rafficEvt,
isClosed(TimeStamp closureTme)-boolean getltemDala(AccessToken token):ResponsePlanitemData CommandStatus status):void
overr|deCIosureTlme(AccessTokeﬁ token, isActive():boolean 1 1 | revokeExecution(AccessTiken token, =
imeStamp C‘Useﬂme) void hasBeenExecuted():boolean - . TrafficEvent trafficEvt):void
executeRespONSE(AL oS Taren ke setActive(AccessToken token):void isUsingObject(identifier(] objectiDs):boolean
getAssociatedEvents():Identifier setinactive(AccessToken token):void eventTypeChanged(AccessToken token,
getHistory(LogFilter fiter, getDescription():string TrafficEvent newTraﬂlcEvl) void
Jong maxC: ount. setDescrlpuon(AccessToken token, eventTransferred(AccessToken token,
LogEntry[] entr|és)'Logneralor ing description):void TrafficEvent newTrafficEvt):void
isPrimary()-boolean . eventTypeChanged(AccessToken token, A
setPrimary(AccessToken token):void TrafficEvent newTrafficEvt):void
SetSecondarny(AccessToken tokeny:void eventTransferred(AccessToken token,
g icipati : articipation(] TrafficEvent newTrafficEvt,
getBasicEventData():BasicEventData Identifier opCenterlD,
string opCenterName):void
isUsingObiject(ldentifier[] objectiDs):boolean ° ° °
remove(AccessToken token):void
Road Event DMSRPIData ‘ HARRPIData
oadwayEven
LaneCt
getLaneConfiguration(): LaneConﬂgurallon 1 TrafficEventType
setLaneConfiguration(AccessToken Lane[] m_lanes
LaneCcnflguratlon IaneCoﬂ'lg) TYPE_PLANNED_ROADWAY_CLOSURE
getLanes():Lane[] TYPE_INCIDENT
TYPE_DISABLED_VEHICLE
1 TYPE_WEATHER_SENSOR_ALERT
TYPE_WEATHER_SERVICE_ALERT
TYPE_ACTION
TYPE _CONGESTION
TYPE _RECURRING_CONGESTION
TYPE_SAFETY
TYPE_SPECIAL_EVENT
WeatherServiceEvent DisabledVehicleEvent ActionEvent nt pecialEvent
LaneState
Lane
LANE_OPEN
LaneState m_currentState 1 1| LANE_CLOSED
Dlrecllon m, dlvecucnOfT ravel LANE_NOT_EXIST
anged
Incident Iong m_ oﬂselFrom Left
setVehicleData(Access Token token, WeatherSensorEvent PlannedRoadwayClosure CongestionEvent
IncidentVehicleData vehicleData):void
setType(AccessToken token, m_recurring
dIncicingyp(e type):vuldk ” —
setRoadConditions(AccessToke token, isR ing(Ac Token toke!
RoadConditionsData roadConditions):void isRecurring( Cisei 5%?(2 I?Jkea).
overrideLaneOpenCloseTime( boolean isRi void
AccessToken token, Ramp Shoulder

Figure 223. TrafficEventManagement (Class Diagram)

R1B2 GUI Detailed Design Rev. 0

3-336

11/20/00



3.19.1.13.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not
fit well into the other event categories. An example of this type of event would be debris in
the roadway.

3.19.1.13.2 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of
the progress of an asynchronous operation. This is typically used by a GUI when field
communications are involved to complete a method call, allowing the GUI to show the user
the progress of the operation. The long running operation calls back to the CommandStatus
object periodically as the command is executed and makes a final call to the
CommandStatus when the operation has completed. The final call to the CommandStatus
from the long running operation indicates the success or failure of the command.

3.19.1.13.3 CongestionEvent (Class)
This class models roadway congestion that may be tagged as recurring or non-recurring
through the use of an attribute.

3.19.1.13.4 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

3.19.1.13.5 DMSRPIData (Class)

The DMSRPIData class is an abstract class that describes a response plan item for a DMS.
It contains the unique identifier of the DMS to contain the DMSMessage, and the
DMSMessage itself.

3.19.1.13.6 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a
command to put a message on a HAR when executed. When the item is executed, it adds
the message to the arbitration queue of the specified HAR. When the item is removed from
the response plan (manually or implicitly through closing the traffic event) the item asks the
HAR’s arbitration queue to remove the message.

3.19.1.13.7 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves
one or more vehicles and roadway lane closures.

R1B2 GUI Detailed Design Rev. 0 3-337 11/20/00



3.19.1.13.8 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

3.19.1.13.9 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

3.19.1.13.10 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

3.19.1.13.11 OrganizationParticipation (Class)
This class is used to manage the data captured when an operator notifies another
organization of a traffic event.

3.19.1.13.12 PlannedRoadwayClosure (Class)
This class models planned roadway closures such as road construction. This interface will
be expanded in future releases to include interfacing with the EORS system.

3.19.1.13.13 Ramp (Class)

This class represents a ramp type traffic lane.

3.19.1.13.14 ResponseParticipation (Class)
This interface represents the involvement of one particular resource or organization in
response to a particular traffic event.

3.19.1.13.15 ResponsePlanltem (Class)

Obijects of this type can be executed as part of a traffic event response plan. A
ResponsePlanltem can be executed by an operator, at which time it becomes the
responsibility of the System to activate the item on the ResponseDevice as soon as it is
appropriate.

3.19.1.13.16 ResponsePlanltemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan
item. Derived classes of this base class have specific implementations for the type of device
the response plan item is used to control.

R1B2 GUI Detailed Design Rev. 0 3-338 11/20/00



3.19.1.13.17 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene
of a traffic event.

3.19.1.13.18 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the
heirarchy provides a break off point for traffic event types that pertain to other modals.

3.19.1.13.19 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety
message to a device.

3.19.1.13.20 Shoulder (Class)

This class represents a shoulder type traffic lane.

3.19.1.13.21 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or
professional sporting event.

3.19.1.13.22 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

3.19.1.13.23 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the
system.

3.19.1.13.24 TrafficEventType (Class)

This enum defines the types of traffic events that are supported by the system.

3.19.1.13.25 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the
system’s weather monitoring devices. Operators will need to manually enter the
information in these events for this release. In future releases, these events will be
automatically generated by the system.

R1B2 GUI Detailed Design Rev. 0 3-339 11/20/00



3.19.1.13.26 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by
an operator in response to receiving an alert from the national weather service.

R1B2 GUI Detailed Design Rev. 0 3-340 11/20/00



3.19.1.14 TrafficEventManagement2 (Class Diagram)

ResponseParticipationData

BasicEventData \dentifier m_participationd ) . ResponseParticipant
ResponseParticipant m_participant

string m_locationDesc boolean m._notifie K>~ string m_name

Direction m_direction TimeStamp m_timeNotified ResponseParticipantType m_type

string m_source -

string m_coun

string m_description

boolean m_isSceneCleared
TimeStamp m_sceneClearedTime
boolean m_isDelayCleared
TimeStamp m_delayClearedTime
boolean m_isConfirmed
TimeStamp m_confirmedTime:
boolean m_ isFalseAlarm

boolean m_isClosed

IncidentType | ;Qm,sﬁ‘a,wapxmg;:f?%‘me ResourceDeploymentData OrganizationParticipationData

TYPE_COLLISION identifier m_controllingOpCenteriD

string m_controlingOpCenterName e o e vtived boolean m_responded

T eStarmD ! TimeStamp m_timeResponded

isvalidForOpeningEvent():boolean Timeatamp m- tmeDeparted

RoadConditionsData 1 IncidentData
ActionEventbata DisabledVehicleData

boolean wet 1 1 IncidentType m_incidentType
boolean rain RoadConditionsData m_roadConditions g‘m}ea” ’"fg'gb”,?‘l Road string m_tagStateOfissue
boolean fog IncidentVehicleData m_vehicleData oolean m_debrisiRoadway string m_tagNumber

bodlean m_uilty
colean m other

string m_otherDescription boalean m_hotsh

R boolean m_gas

boolean m_directions

boolean m _ownDisposition
boolean m_callForService
boolean m”goneOnArrival
boolean m_abandonedVehicle
long numCarsinvolved pocjean i _telayOperator
long numCarsOverturned string m_otherDescription
long numPickupVanSuvs involved
long numPickupVanSuvsOverturned | 1
long numSingleUnitT
long numSingleUnitTrucksOverturned
long numSingleUnitTrucksLostLoad
long num TractorTrailersinvolved

long num TractorTralersOverturned
long num TractorTralersLostLoad
long num Tractor Trailers JackKnifed
long numMotorcyclesinvolve

boolean iceOrSnow boolean m_tireChange

IncidentVehicleData

TrafficEventEventType T Tr Jpdate

ActionEventAdded TrafficEvent theTrafficEvent dentifier trafficEventAID dentifier trafficEventiD dentifier trafficEventiD identifier plantemiD
CongestionEventAdded Data Data Identifier D Identifier planitemID Identifier participationiD ResponsePlantemStatus planitemStatus
DisabledVehicleEventAdded ring
HistoryLogEntriesAdded ResponsePlanitem planttem
Incident po Data plantemData
LaneConfigurationChanged
OrganizationParticipationAdded

hanged

o
ParticipationRemoved

LogEntriesAdded LaneConfigurationChangedinfo p p

RO e Identifier D Identifier eventiD p Identifier D string lastknownState
ResponsePlantemAdded LogEntry]] logEntries LaneC newC poi Data Data boolean isActive
ResponsePlantemNodified Identifier trafficEventiD boolean
ResponsePlantemRemoved Identifier(] plantemiDs

ResponsePlanStatusChanged

SafetyEventAdded
SpecialEventAdded
TrafficEventAssociated

T TrafficEventTypeC
TrafficEventClosed
TrafficEventDeleted Identifier primaryEventiD Identifier eventiD
TrafficEventStateChanged TrafficEvent primaryEvent TrafficEvent new TrafficEvent ResponseParticipationAddedInfo ResponsePlanStatusChangedinfo
TrafficEventTypeChanged dentifier D Data newEventData
WeatherSensorEventAdded \dentfier trafficEventD
WeatherServiceEventAdded o ath
po

Identifier trafficEventiD
D

Data Jpdatef] st

P ip:

Figure 224. TrafficEventManagement2 (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-341 11/20/00



3.19.1.14.1 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

3.19.1.14.2 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will
inherit all data shown in this class.

3.19.1.14.3 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

3.19.1.14.4 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

3.19.1.14.5 IncidentType (Class)

This enumeration lists all possible incident types.

3.19.1.14.6 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the
exchange of data between GUI and server.

3.19.1.14.7 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic
event is changed.

3.19.1.14.8 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event
history log of a traffic event.

3.19.1.14.9 OrganizationParticipationData (Class)

This class represents the data required to describe an organization’s participation in the
response to a traffic event.

3.19.1.14.10 ResourceDeploymentData (Class)

This class represents the data required to describe a resource’s participation in the response
to a traffic event.

R1B2 GUI Detailed Design Rev. 0 3-342 11/20/00



3.19.1.14.11 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in
a response.

3.19.1.14.12 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

3.19.1.14.13 ResponsePlanltemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

3.19.1.14.14 ResponsePlanStatusChangedInfo (Class)
This structure contains the data that is broadcast when one or more response plan items in
the response plan of a traffic event change state.

3.19.1.14.15 RoadConditionsData (Class)
This class represents the data necessary to describe the road conditions at the scene of a
traffic event.

3.19.1.14.16 ResponseParticipationAddedInfo (Class)
This structure contains the data that is broadcast when a response participant is added to the
response to a particular traffic event.

3.19.1.14.17 ResponseParticipationRemovedInfo (Class)
This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

3.19.1.14.18 ResponseParticipationChangedInfo (Class)
This structure contains the data pushed in a CORBA event any time any type of response
participation object changes state.

3.19.1.14.19 ResponsePlanltemInfo (Class)
This structure contains the data that is broadcast any time a new response plan item is added
or an existing response plan item is modified.

3.19.1.14.20 ResponsePlanltemsRemovedinfo (Class)

This structure contains the data that is broadcast when one or more response plan items are
removed from a traffic event.

R1B2 GUI Detailed Design Rev. 0 3-343 11/20/00



3.19.1.14.21 ResponsePlanltemStatusUpdate (Class)

This structure contains data that describes a status change to a particular response plan item.

3.19.1.14.22 TrafficEventAddedInfo (Class)
This structure contains the data that is broadcast when a new traffic event is added to the
system.

3.19.1.14.23 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

3.19.1.14.24 TrafficEventAssociationRemovedInfo (Class)
This structure contains the data that is broadcast when the association between two traffic
events is removed.

3.19.1.14.25 TrafficEventEventType (Class)
his enumeration defines the types of CORBA events that can be broadcast on a Traffic
Event related CORBA Event channel.

3.19.1.14.26 TrafficEventTypeChangedinfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The
traffic event object that represented the traffic event previously is removed from the system
and is replaced by the newTrafficEvent reference contained in this structure. If the
consumer of this CORBA event has stored any references to the traffic event previously,
those references should be replaced with this new reference.

R1B2 GUI Detailed Design Rev. 0 3-344 11/20/00



3.19.1.15 UserManagement (Class Diagram)

This class diagram contains the interfaces necessary to manage and utilize user profiles.

ProfilePropertyList

UserManager

Profile
createUser(AccessToken token,UserName,Password):void ProfileProperty
deleteUser(AccessToken,UserName):void 1 1
getUsers(AccessToken):UserList 1 * | key
getRoles(AccessToken):RoleList . setProfileProperties(AccessToken, ProfilePropertyList):void value
getUserRoles (AccessToken,UserName):RoleList ) o deleteProfileProperty(Access Token,ProfileProperties):void
getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList getProfileProperties():ProfilePropertyList
setRoleFunctionalRights(AccessToken,RoleName, FunctionalRightList):void
createRole(AccessToken, Role):void
deleteRole(AccessToken,RoleName):void
changeUserPassword(AccessToken, UserName,Password,Password):void
setUserRoles(AccessToken, UserName, RoleList):void
grantRole(AccessToken, UserName,RoleName):void
revokeRole(AccessToken,UserName,RoleName):void
setUserPassword(AccessToken, UserName,Password):void

ping():void

getSystemProfile():Profile

getUserProfile(AccessToken,UserName):Profile

UserName Role FunctionalRight

description id
name orgFilter

1 1 1

UserList RolelList FunctionalRightList

Figure 225. UserManagement (Class Diagram)

3.19.1.15.1 FunctionalRight (Class)

A functional right epresents a particular user capability. A functional right grants a
particular capability to perform system functions. Each functional right may be limited by
attaching the identifier of a particular organization to which this right is constrained. This
capability allows an administrator to grant a particular Role the ability to modify only
shared resources owned by the identified organization. The orgFilter identifier CHART2
will allow access to any organizations shared resources.

R1B2 GUI Detailed Design Rev. 0 3-345 11/20/00



3.19.1.15.2 FunctionalRightList (Class)

A list of functional rights.

3.19.1.15.3 Profile (Class)

This class contains a set of user or administrator defined properties that are used to
configure how the CHART Il system behaves or presents information to a user.

3.19.1.15.4 ProfilePropertyList (Class)
A list of profile properties.

3.19.1.15.5 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the
system database.

3.19.1.15.6 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting the
user all functional rights contained within the role.

3.19.1.15.7 RoleL.ist (Class)

This structure contains a list of roles.

3.19.1.15.8 UserL.ist (Class)

A list of user names.

3.19.1.15.9 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

3.19.1.15.10 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes
users, roles, and functional rights. The UserManager is largely an interface to the User
Management database tables.

R1B2 GUI Detailed Design Rev. 0 3-346 11/20/00



3.20 Utility

3.20.1 Class Diagrams

3.20.1.1 UtilityClasses (Class Diagram)

Identifier IdentifiableLookupTable MultiConverter MultiParseListener
DBULtility m_id Uniquelyldentifiable 1 .
o .| putddeniiabie) muliToPlainText(mult) messageT(tex))
createldentiier() equals(Object obj) plainTextToMuli(text, formatter) fine Justification(justiy)
escapeSingleQuotes(string):string areldentifiersEqual() hashCode() getd) I listener) newLine(pixelSkip)
executeSQLStatement(conn, query, string, int):void byte(] getiD() getName() elements() ewPage|
size() 1 pageDisplayTime(timeOn, timeOff)
knownTag(tag)
java.lang.Runnable * parseComplete()
QueusableCommand MultiFormatter
DBConnectionManager run()
cue) * plainTextToMuli(text)
P interrupted()
& nnection || getCmastatus();
r h\ﬁa;ec%mecuuno Getroken( byiel CommandQueue
m_commands TokenManipulator
m_shutdown
Type
java.util Properties addCommand(QueueableCommand cmd) TokenManipulator()
agg‘(écm m()andonTcp{Queueab\eCcmmand cmd) | | createToken(userName, opCenterD, opCenterName)
sl lown( optimize(operation, orgFilter)
ServiceApplication -getNextCommand():QueueableCommand add(userToken, operation, orgFilter)
getProperty() add(userToken, operation)
setProperty() remove(userToken, operation, orgFier)
remove(userToken, operation)
2 getop( " Token)
getOpCenterID(userToken)
1 shumowno ServiceApplicationModule QHHDS‘NENEUSE”DEH{
UserN: erToken)
DoAY DoaName) PO oot
ServiceApplicationProperties erTradnggsie ) Cosmm"g Regstr PR Checkhccess(userTolen, operaton,orgFiter)
jetTradingLookup():Cos Trading. Lookuy ——— initialize(ServiceApplication app):boolean h d
asRight(user Token, operation, orgFilter)
::rE)g‘enlcnanne\FacwM) EvenlchanHE‘Faclw shutdown(ServiceApplication app):boolean e o b oriten
IcCheckSum(userToken)
ServiceApplicationProperties( elOperauonsLog() Opevanonsmg N ca
Sirng propertesFlename) GetProperties ) java utlPro Lo prncTokeruser Token)
getProperties() elDelauhPmpemes()Javauu\ Pmpemes P
etDefaultProperties() egisterObject(obi, id. name, type, publish):void
etThreadModel(yint registerEventChannel(EventChannel, name):void
jetThreadPoolSize():int getiDGenerator():dentifierGenerator
etDatabaseConnectString():String BucketSet
tDatabas tring
jetDatabasePassword():String " m_comparables
et add(comparable) FMS
DefaultServiceApplication remwe(ccmpalab\e)
1 removeAll
QetE\emems(\m)
POA 2 1 ize() addDMS

D prop \SEmp"/O removeDMS
the_POAManager -witeOffer q intf] offeriDs):boolean b“aﬂés“t‘l"

“rem, tring stopPoling
activate_object(Servant obi) startPoling
deactivate_object(object_id) LogFile forcedPoll

resetController
setMessage
PushEventSupplier m Lcqueggne ethessage
s setPollnterval
m_cteolcrDate SaCommostrmeout
nnelFactory factory, String 3 ipplier supplier) m_defFileName getCommLostTimeou
javalang.Thread getChannel():EventChannel; [ m_logLevel getmyncPungResu\ls
SethiaxReconnectinterval(int seconds):void; log(Obiect obj, String message, int level)
push(Any data)void; logStack(Object obj, String message, int level, Throwable th)
start) disconnectPushConsumer(void):void; setkeepDays(int days) Lo
nterrupt() selLogFﬂeName(Smng fileName)
fuerl‘l(])?/emnn(bnmean) . gg{fggpmy;meo 1 1| m_instance
penLogFile() !
setLogLevel(int level) logs message get():Log;
1 getLogLevelf using fog()
deleteLogFiles(Date presentTime) logStack()
RecurringTimer CosEventCl EventChannel
-long m_intervallilis
OperationsLog OpLogQueue ObjectRemovalListener
addTimerListener(TimerUpdatable):void for consumers() 11
removeTimerListener(TimerUpdatable):void | | for_suppliers() [~ m_logQueueTime
- p—— it . Pperaucnsmg(DBCcnnecuchanagevdb) OpLogQueue() objectRemoved(Obiject obj):void;
fector m_cmdStatusLis o
CommandStatus m masterStatus flushLog flush()
Strng m, masterStatusTex 1 shutdown getFirstilessage()
long m_total
long m_s suocess 1
Iong m failure 1
ong - imdbrermined
add(CommandStatus):void EventC Corbautilities
start(long intervalMilis):void 1 EventConsumer - opL
stop():voi - 1
waitForCompletion():void PushEventConsumer Stringm  actionDesc findAlObjectsOfType(ORB, lookup, type):Object]
String m_actionType
m_event_channel verifyConnection() setinterval() String m_opCenter
m_pushConsumer connect() remove(consumer) Date. m-tmestamp
“hasC String m_user
PushEventConsumer(channel, pushConsumer) -verifyC

Figure 226. UtilityClasses (Class Diagram)

R1B2 GUI Detailed Design Rev. 0 3-347 11/20/00



3.20.1.1.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects
added to this collection must be of the same concrete type. Each element in the collection
has an associated counter that tracks how many times this element has been added. It is then
possible to get only the elements which have been added to the collection n times where n
is a positive integer value. This class is very useful for creating GUI menu’s for multiple
objects as it allows all objects to insert their menu items and then allows the user to get only
those items that all objects inserted.

3.20.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in
first out order. As each command object is pulled off the queue by the CommandQueue’s
thread, the command object’s execute method is called, at which time the command
performs its intended task.

3.20.1.1.3 CommandStatusWatcher (Class)

This class is a utility that monitors one or more command status objects for completion. It
periodically checks each command status object’s completion code and maintains statistics
on the number of failures and successes. It provides a blocking method that waits for all
command status objects to complete.

3.20.1.1.4 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

3.20.1.1.5 CorbauUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server
and GUI for CORBA Trader service transactions.

3.20.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART Il system thread requiring database access gets a database
connection from the pool of connections maintained by this manager class. The connections
are maintained in two seperate lists namely, inUseList and freeList. The inUseList contains
connections that have already been assigned to a thread. The freeList contains unassigned
connections. This class assumes that an appropriate JDBC driver has been loaded either by
using the “jdbc.drivers” system property or by loading it explicitly. The class has a monitor

R1B2 GUI Detailed Design Rev. 0 3-348 11/20/00



thread that is started by the constructor. This connection monitor thread periodically checks
the inuseL.ist to see if there are connections that are owned by dead threads and move such
connections to the freeList. The connection monitor thread is started only if a non-zero
value is specified for the monitoring time interval in the constructor.

3.20.1.1.7 DBUtility (Class)

This class contains methods that allow interaction with the database.

3.20.1.1.8 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is
passed a properties file during construction. This properties file contains configuration data
used by this class to set the ORB concurrency model, determine which ORB services need
to available, provide database connectivity, etc. The properties file also contains the class
names of service modules that should be served by the service application. During startup,
the DefaultServiceApplication instantiates the service application module classes listed in
the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the
Trading Service. Each module must provide an implementation of the getOfferIDs method
and be able to return the offer ids for each object they have exported to the trader during
their initialization. The DefaultServiceApplication stores all offer IDs in a file during its
startup. Each module is expected to remove its offers from the trader during a shutdown. If
the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up
old offers prior to initializing modules during its next start. This keeps multiple offers for
the same object from being placed in the trader.

3.20.1.1.9 EventConsumer (Class)

This interface provides the methods that any EventConsumer object that would like to be
managed in an EventConsumerGroup must implement.

3.20.1.1.10 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that
they do not lose their connection to the CORBA event service. The class will periodically
ask each consumer to verify its connection to the event channel on which it is dependant to
receive events.

3.20.1.1.11 FMS (Class)

This class represents the CHART Il system’s interface to the FMS SNMP manager. Most
methods included in this class have an associated method in the FMS SNMP Manager DLL
provided by the FMS Subsystem. The other methods in this class exist to provide easier
interface to the DLL. As an example, this class contains a blankSign method that actually
calls setMessage on the FMS Subsystem with the message set to blank and beacons off.

R1B2 GUI Detailed Design Rev. 0 3-349 11/20/00



3.20.1.1.12 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the
CHART2 system. It contains a static member for each possible functional right.

3.20.1.1.13 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

3.20.1.1.14 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.20.1.1.15 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable
objects.

3.20.1.1.16 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

3.20.1.1.17 java.lang.Thread (Class)

This class represents a java thread of execution.

3.20.1.1.18 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to
a stream or loaded from a stream. Each key and its corresponding value in the property list
is a string. A property list can contain another property list as its “defaults”; this second
property list is searched if the property key is not found in the original property list.

3.20.1.1.19 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for
system trace messages.

R1B2 GUI Detailed Design Rev. 0 3-350 11/20/00



3.20.1.1.20 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log that is modeled
by the OperationsLog class.

3.20.1.1.21 MultiConverter (Class)

This class provides methods that perform conversions between the DMS MULTI mark-up
language and plain text. It also provides a method that will parse a MULTI message and
inform a MultiParseListener of elements found in the message.

3.20.1.1.22 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to
MULT]I formatted messages.

3.20.1.1.23 MultiParseL.istener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an
implementing class to be notified as parsing of a MULTI message occurs. An exemplary
use of a MultiParseL.istener would be the MessageView window which will need to have
the MULTI message parsed in order to display it as a pixmap.

3.20.1.1.24 ObjectRemovalL.istener (Class)

This interface is implemented by objects that wish to be notified of objects being removed
from the system. This is typically used by objects that store a collection of other objects,
such as a factory, to allow them to remove objects from their collection when the object is
to be removed from the system.

3.20.1.1.25 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart Il operations log. At the
time of instantiation of this class, it creates a queue for log entries. When a user of this class
provides a message to be logged, it creates a time-stamped OpLogMessage object and adds
this object to the OpLogQueue. Once queued, the messages are written to the database by
the queue driver thread in the order they were queued.

3.20.1.1.26 OpL.ogQueue (Class)

This class is a queue for messages that are to be put into the system’s Operations Log.
Messages added to the queue can be removed in FIFO order.

R1B2 GUI Detailed Design Rev. 0 3-351 11/20/00



3.20.1.1.27 OpLogMessage (Class)

This class holds data for a message to be stored in the system’s Operations Log.

3.20.1.1.28 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant
objects.

3.20.1.1.29 PushEventConsumer (Class)

This class is a utility class that will be responsible for connecting a consumer
implementation to an event channel, and maintaining that connection. When the
verifyConnection method is called, this object will determine if the channel has been lost
and will attempt to re-connect to the channel if it has.

3.20.1.1.30 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled indepently of a supplier’s push rate.

3.20.1.1.31 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a
CommandQueue for asynchronous execution. Derived classes implement the execute
method to specify the actions taken by the command when it is executed. This interface
must be implemented by any device command in order that it may be queued on a
CommandQueue. The CommandQueue driver calls the execute method to execute a
command in the queue and a call to the interuppted method is made when a
CommandQueue is shut down.

3.20.1.1.32 RecurringTimer (Class)

A recurring timer is a thread that notifies each TimerUpdatable object that has been
registered on a specified period.

R1B2 GUI Detailed Design Rev. 0 3-352 11/20/00



3.20.1.1.33 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
Chartll service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.20.1.1.34 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

3.20.1.1.35 ServiceApplicationProperties (Class)

This class provides methods that allow the DefaultServiceApplication to access the
necessary properties from the java properties configuration file. It also provides a default
properties file which can be retrieved by anyone holding a ServiceApplication interface
reference. This gives each installed service module the opportunity to load default values
before retrieving property values from the properties file.

3.20.1.1.36 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code
in the system that knows how to create, modify and check a user’s functional rights. It
encapsulates the contents of an octet sequence that will be passed to every secure method.
Secure methods should call the checkAccess method to validate the user. Client processes
should use the check access method to verify access and optimize to reduce reduce the size
of the sequence to only those rights which are necessary to invoke the secure method. The
token contains the following information. Token version, Token ID, Token Time Stamp,
Username, Op Center ID, Op Center IOR, functional rights

3.20.1.1.37 Uniquelyldentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2 GUI Detailed Design Rev. 0 3-353 11/20/00



1.1.1.1 UtilityClasses2 (Class Diagram)

- LogEntry
LogFilter DatabaseLogger N
TimeStamp m_timestamp
TimeStamp m_startDate Identifier m_eventiD
TimeStamp m_endDate * 1 1 * | string m_text
Identifier m_eventiD DatabaseLogger(tableName) string m_author
string m_opCenterName addEntry(logEntry) : void string m_opCenterName
string m_containsText checlExpiredEntries() : void
getEntries(filter, maxCount) : Loglterator equals() : boolean
factory createlLogFilter() : LogFilter shutdown() : void factory createLogEntry() : LogEntry
hashCode() : int
1 matchesFilter(LogFilter filter) : boolean
1
Logtlterator
long m_timeOfLastUse Constructor sets m_refCount to 1.
Additional references recorded by LogEntryCache
getMoreEntries(long maxCount) : LogEntryList with incdRefCount() and decrRefCount()
destroy():void N
LogEntryCache deletes a CachedLogEntry from
hashtable when its refCount hits 0. .
ll - - CachedLogEntry
m_keys is an ordered array of Loglteratorimpl LogEntryCache
slots in the cache for the LogEntries * 1 m_logEntry
which match the filter. Each key Object] m_keys java.util Hashtable hashTable 1 * | m_refCount
is used to extract the int m_nextEntry . 2
LogEntry from the LogEntryCache. addEntry(LogEntry entry) : Object decrRefCount() : void
m_nextEntry indexes into array addEntry(LogEntry entry) getEntry (Object key) : LogEntry equals() : boolean
of m_entrySlots, pointing to the getEntry() : LogEntry
next entry to extract. getRefCount() : int
hashCode() : int
incrRefCount() : void

Figure 227. UtilityClasses?2 (Class Diagram)

3.20.1.1.38 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient
LogEntryCache. The object of this class encapsulates the stored log entry and adds a
reference count.

3.20.1.1.39 DatabaselLogger (Class)

This class represents a generic database logger that can be used to log and retrieve
information from the database. This class also provides a mechanism for the user to filter
and retrieve logs that meet specific criteria.

3.20.1.1.40 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general
Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic
Event actions (opening, closing, etc.) are logged in the Communications Log as well as in
the history of the specific Traffic Event.

R1B2 GUI Detailed Design Rev. 0 3-354 11/20/00



3.20.1.1.41 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess
of the requestor-specified maximum number of entries to return at one time. The
Loglterator stores references to the LogEntry objects thus cached, and requests additional
objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate
copies of LogEntry objects, and it deletes LogEntry objects when they are no longer
needed.

3.20.1.1.42 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the
Communications Log. The caller would create an object of this type specifying the criteria
that each log entry must match in order to be returned.

3.20.1.1.43 Loglterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval
request results in more data than is reasonable to transmit all at once, one clump of entries
is returned at first, together with a Loglterator from which additional data can be requested,
repeatedly, until all entries are returned or the user cancels the operation.

3.20.1.1.44 Loglteratorimpl (Class)

The LoglteratorImpl implements the Loglterator interface; that is, it does the actual work
which clients can request via the Loglterator interface. The Loglteratorimpl stores data
relating to cached LogEvents for a single retrieval request, and implements the client
request to get additional clumps of data pertaining to that request.

R1B2 GUI Detailed Design Rev. 0 3-355 11/20/00



3.20.2 Sequence Diagrams

3.20.2.1 DatabaselLogger:getEntries (Sequence Diagram)

o

i DatabaselLogger LogEntryCache Hashtable
getEntries(maxCount)=>}
create LogEntryList
"Request data
matching filter
from database"
é"[if no matching data] _
LogEntryList (empty)
[*for each create LogEntry
row returned, ]
until maxCount i
or done] add LogEntry to LogE‘nlryList;
fif done] i
LogEntryList
create Loglteratorimpl
create LogEntry
addEntry(LogEntry)
—addEntry(LogEntry)—>
[*for each ;
row returned | y
i ] i i _[if not currently cached] i | CachedLogEntn
until no more] i create
i [if not currently (:ached]9
put()
[if already cached]
incrRefCount
— LogEntryList & _____
Loglterator-. . Really the
.| Firstclump of entries is returned, plus an CachedLogEntry,
™ iterator from which requestor can get more. cast as an Object,
Later, when and known only as
ready for more a"key" by the
Loglterator
= getMoreEntries(maxCount)
LogEntryList <create
getEhlry(key)
This LogEntry i 9el0
is LogEntry is
: CachedLogEntry
retrieved <—CachedLogEntry— CachedLogEntr
[*maxCount
b times, or LogEntry ~getEntry()
Next clump of LogEntry until no more]
objects is returned. If maxCount ——decrRefCount();
entries are returned, caller can f ——
call getMoreEntries() again. L if rejgﬂ?gcga_mﬂ
L _add LogEntry__:
~ to LogEntryList
LogEntryList:

When LogEntryList comes back with less than maxCount entries, user should call destroy() on the iterator, see
CommLogModule::destroy for details. If user fails to call destroy, iterator will be destroyed by cleanup thread after
a period of disuse.

Figure 228. DatabaselLogger:getEntries (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-356 11/20/00



3.20.2.2 DictionaryWrapper:checkForBannedWords (Sequence Diagram)

This diagram shows processing performed by the DictionaryWrapper that is representative
of all methods that it duplicates in the Dictionary interface. When a method is called that is
to be delegated to a system dictionary, the DictionaryWrapper first attempts to use the
dictionary references (if any) that it has already discovered during a previous method
invocation. If no references exist (this is true for the first usage of the wrapper) or if all
existing references return CORBA failures when used, the DictionaryWrapper queries the
trader for all Dictionaries in the system and then attempts to use each until a “live”
reference is found or all of the newly discovered references return CORBA failures when
used.

A timestamp is used to prevent a flurry of trader queries when no Dictionary objects are
available. Prior to doing a trader query to (re)discover dictionaries, the DictionaryWrapper
makes sure that at least a minimum amount of time has elapsed since the last time it tried to
find a dictionary. The use of synchronization around the discovery process also helps to
prevent a flood of trader queries.

R1B2 GUI Detailed Design Rev. 0 3-357 11/20/00



i DMSMessage DictionaryWrapper CorbaUtilities Dictionary m_lock

[—valid jeContent:

9etly

checkForBannedWords:

checkForBannedW ords

[*while more refs in vector
and checkForBannedWords
has thrown a CORBA

exception] [CORBA exception caught]
“remove reference from
vector"

[Dictionary.checkForBannedW ords If Dictionary.checkForBannedWords is
did not throw a CORBA able to be called, the results are returned

M exception}---------------4 to the user and this method is finished.

results Otherwise, if the minimum time has elapsed

since the last time it tried, the method will
try to find a different DictionaryRef to use.

ynchronized

[current time minus
,,,,,,,,,,,,, discovery timestamp__
less than min discovery peri
CHART2EXxception

findAllObjectsOfType———>}

"Narrow each object
returned to a Dictionary
and store in vector"

e 1
“"set discovery timestamp"

“end synchronization™

checkForBannedWords

[*while more refs in vector
and checkForBannedWords
has thrown a CORBA

exception] [CORBA exception caught]

“remove reference from
vector"

[Dictionary.checkForBannedWords
did not throw a CORBA
S exception]------rrree-eed
results

[All refs threw CORBA
exception}

CHART2Exception

Figure 229. DictionaryWrapper:checkForBannedWords (Sequence Diagram)

R1B2 GUI Detailed Design Rev. 0 3-358 11/20/00



Acronyms

The following acronyms appear throughout this document:

API Application Program Interface

BAA Business Area Architecture

CORBA Common Object Request Broker Architecture
DMS Dynamic Message Sign

EORS Emergency Operations Reporting System
FMS Field Management Station

GUI Graphical User Interface

IDL Interface Definition Language

ITS Intelligent Transportation Systems

NTCIP National Transportation Communications for ITS Protocol
OMG Object Management Group

ORB Object Request Broker

POA Portable Object Adapter

R1B2 Release 1, Build 2 of the CHART Il System
TTS Text To Speech

UML Unified Modeling Language

R1B2 GUI Detailed Design Rev. 0 AC-1 11/20/00



References

CHART II GUI High Level Design For Release 1 Build 1, document number M361-DS-003R0,
Computer Sciences Corporation and PB Farradyne, Inc.

CHART Il Release 4 Interim BAA Report, document number M361-BA-004R0, Computer
Sciences Corporation and PB Farradyne.

CHART 1l System Requirements Specification Release 1 Build 2, document number M361-RS-
002R1, Computer Sciences Corporation and PB Farradyne.

R1B2 High Level Design, document number M362-DS-005R0, Computer Sciences Corporation
and PB Farradyne.

FMS R1B1 High Level Design, document number M303-DS-001R0, Computer Sciences
Corporation and PB Farradyne.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

R1B2 GUI Detailed Design Rev. 0 REF-1 11/20/00



Appendix A — Glossary

Action Event

Approved Word

Arbitration Queue

Banned Word

Comm Log

Congestion Event

CORBA Event

CORBA Trader

Data Model

Dictionary

Deployable Resource

DMS

DMS Stored Message Item

Emergency Operations
Reporting System

R1B2 GUI Detailed Design Rev. 0

A Traffic Event related to the disposition of actions in response to device
failures and non-blockage events (e.g. signals, debris, utility, and signs).

A word that is known to the system and has been approved for use when
communicating with the motoring public via a messaging device. The
dictionary will suggest words to the operator when it encounters a word that
has not been previously approved.

A prioritized queue containing messages for display or broadcast on a traveler
information device.

A word that may not be used when communicating with the motoring public
via a messaging device such as a HAR or DMS.

A collection of information received from any source that requires no action.

A Traffic Event related to roadway congestion situations. Congestion Events
may be recurring or non-recurring.

A CORBA mechanism using which different Chart2 components exchange
information without explicitly knowing about each other.

A CORBA service that facilitates object location and discovery. A server
advertises an object in the Trading Service based on the kind of service
provided by the object. A client locates objects of interest by asking the
Trading Service to find all objects that provide a particular service.

An object repository that keeps track of changes to the various objects in the
repository and informs about these changes as they occur, to observers who
are interested in the objects in the repository. A Data Model identifies the
subject in a Subject/Observer design pattern.

A collection of banned and approved words.

Any resource that can be deployed to the scene in order to provide assistance
during a traffic event.

A Dynamic Message Sign that can be controlled by one Operations Center at

a time.

A plan item that is used to set a specific message on a specific DMS when
added to a Traffic Event response plan and activated.

A system external to CHART Il that (among other things) keeps track of
planned roadway closures and permits.

G-1 11/20/00



Factory

FMS

Functional Right

Graphical User Interface

GUI Wrapper Object

HAR

HAR Message

HAR Message Clip

HAR Message Slot

Incident Event

Installable Module

Lane Closure

Message Library

R1B2 GUI Detailed Design Rev. 0

A CORBA object that is capable of creating other CORBA objects of a
particular type. The newly created object will be served from the same
process as the factory object that creates it.

Field Management Station through which the CHART Il system
communicates with the devices in the field.

A privilege that gives a user the right to perform a particular system action or
related group of actions. A functional right may be limited to pertain only to
those shared resources owned by a particular organization or can pertain to
the shared resources of all organizations.

Part of a software application that provides a graphical interface to its user.

A GUI wrapper object is one that wraps a server object to provide it with GUI
functionality such as menu handling. It also helps in performance
enhancement by caching data locally thereby avoiding network calls when not
necessary.

A Highway Advisory Radio which can be controlled by one Operations
Center at a time.

A message which is capable of being stored on a HAR. It is composed of a
message header, body and footer.

A message clip is part of a HAR message that could be a header or body or
footer. It can be stored either as a text or in one of the binary forms (WAV,
MP3 etc).

A message slot is one of the numbered message stores inside the HAR device
that can be used to store pre-fabricated messages useful for quick retrieval and

playing.

A Traffic Event that is entered by an Operator in response to one of the
following types of incidents: Disabled in roadway, Personal injury, Property
damage, Fatality, Debris in roadway, Vehicle fire, Maintenance, Signal call,
Police activities, Off-road activity, Declaration of emergency, Weather, or
Other.

A plugable GUI module that provides a specific function, which when
registered with the GUI is called on to initialize itself at the time of GUI
startup and shut down at the time of GUI shut down.

The closure of one or more roadway lanes resulting from a Traffic Event.

A collection of stored messages that can be displayed on the DMS or
broadcast on a HAR.

G-2 11/20/00



Navigator

Object Discovery

Operations Center

Operator

Organization

Plan

Plan Item

Response Plan

Response Plan Item

Role

Safety Message Event

Service Application

Service Application Module

R1B2 GUI Detailed Design Rev. 0

A Navigator is a GUI window that contains a tree on the left-hand side and a
list on the right hand side. Tree elements represent groups of objects and the
list on the right hand side represents the objects in the selected group.

A GUI mechanism in which the client periodically asks the CORBA Trading
Service to find objects of those types that are of interest to the GUI, such as
DMS, HAR, Plan etc.

A center where one or more users may log in to operate the Chart Il system.
Operations centers are assigned responsibility for shared resources that are
controlled by users who are logged in at that operations center.

A Chart Il user that works at an Operations Center.

An organization is an agency that participates in the CHART Il system and
owns one or more Shared Resources.

A collection of plan items that can be added to the response plan of a traffic
event as a group.

An action in the system that can be set up in advance to be activated one or
more times in the future. Plan items must be contained in a plan. Specific
types of plan items exist for specific functionality. A plan item may be copied
to a traffic event response plan and subsequently activated.

A collection of response plan items created in response to a traffic event that
can be activated as a group..

An action in the system that can be set up in response to a traffic event.
Response plan items must be contained in a response plan. Specific types of
response plan items exist for specific functionality. A response plan item
carries out its specific task when activated

A Role is a collection of functional rights that a user may perform. The roles
that pertain to a particular user for a particular login session are determined
when he/she logs into the system.

A Traffic Event that is entered by an Operator to display and/or broadcast
safety messages.

A software application that can be configured to run one or more service
application modules and provides them basic services needed to serve
CORBA objects.

A software module that serves a related group of CORBA objects and can be
run within the context of a service application.

G-3 11/20/00



Shared Resource

SHAZAM

Sign
Stored Message

System Profile

Token

Traffic Event

Transferable Shared Resource

User

User Profile

Weather Service Alert Event

R1B2 GUI Detailed Design Rev. 0

A resource that is owned by an organization. A user may be granted access to
a shared resource owned by an organization through the functional rights
scheme.

A device used to notify the traveling public of the broadcast of a HAR
message.

see DMS
A message that may be broadcast on a HAR or displayed on a DMS.

Information used to define the configuration of the system. Properties stored
in the system profile apply to all users when they are logged in.

A token or access token is a security blob that encloses information about a
user and the functional rights associated with the user. All secured Chart2
operations require a token to be passed to it and based on the functional rights
found in a token a user is allowed or denied access.

A traffic event represents a roadway event that is affecting traffic conditions
and requires action from system operators.

A shared resource that can be transferred from one operations center to
another by a user with the appropriate functional rights.

A user is somebody who uses the CHART |1 system. A user can perform

different operations in the system depending upon the roles they have been
granted.

A set of information used to correctly configure an individual user’s GUI on
startup.

A Traffic Event that is entered by an Operator in response to National
Weather Service advisories.

G-4 11/20/00



